/* libs/graphics/sgl/SkUtils.cpp
**
** Copyright 2006, Google Inc.
**
** Licensed under the Apache License, Version 2.0 (the "License"); 
** you may not use this file except in compliance with the License. 
** You may obtain a copy of the License at 
**
**     http://www.apache.org/licenses/LICENSE-2.0 
**
** Unless required by applicable law or agreed to in writing, software 
** distributed under the License is distributed on an "AS IS" BASIS, 
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
** See the License for the specific language governing permissions and 
** limitations under the License.
*/

#include "SkUtils.h"

#if 0
#define assign_16_longs(dst, value)             \
    do {                                        \
        (dst)[0] = value;   (dst)[1] = value;   \
        (dst)[2] = value;   (dst)[3] = value;   \
        (dst)[4] = value;   (dst)[5] = value;   \
        (dst)[6] = value;   (dst)[7] = value;   \
        (dst)[8] = value;   (dst)[9] = value;   \
        (dst)[10] = value;  (dst)[11] = value;  \
        (dst)[12] = value;  (dst)[13] = value;  \
        (dst)[14] = value;  (dst)[15] = value;  \
    } while (0)
#else
#define assign_16_longs(dst, value)             \
    do {                                        \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
        *(dst)++ = value;   *(dst)++ = value;   \
    } while (0)
#endif

///////////////////////////////////////////////////////////////////////////

void sk_memset16_portable(uint16_t dst[], uint16_t value, int count)
{
    SkASSERT(dst != NULL && count >= 0);

    if (count <= 0)
        return;

    // not sure if this helps to short-circuit on small values of count
    if (count < 8)
    {
        do {
            *dst++ = (uint16_t)value;
        } while (--count != 0);
        return;
    }

    // ensure we're on a long boundary
    if ((size_t)dst & 2)
    {
        *dst++ = (uint16_t)value;
        count -= 1;
    }

    uint32_t value32 = ((uint32_t)value << 16) | value;

    // handle the bulk with our unrolled macro
    {
        int sixteenlongs = count >> 5;
        if (sixteenlongs)
        {
            uint32_t* dst32 = (uint32_t*)dst;
            do {
                assign_16_longs(dst32, value32);
            } while (--sixteenlongs != 0);
            dst = (uint16_t*)dst32;
            count &= 31;
        }
    }

    // handle (most) of the rest
    {
        int longs = count >> 1;
        if (longs)
        {
            do {
                *(uint32_t*)dst = value32;
                dst += 2;
            } while (--longs != 0);
        }
    }

    // cleanup a possible trailing short
    if (count & 1)
        *dst = (uint16_t)value;
}

void sk_memset32_portable(uint32_t dst[], uint32_t value, int count)
{
    SkASSERT(dst != NULL && count >= 0);

    {
        int sixteenlongs = count >> 4;
        if (sixteenlongs)
        {
            do {
                assign_16_longs(dst, value);
            } while (--sixteenlongs != 0);
            count &= 15;
        }
    }

    if (count)
    {
        do {
            *dst++ = value;
        } while (--count != 0);
    }
}

//////////////////////////////////////////////////////////////////////////////

/*  0xxxxxxx    1 total
    10xxxxxx    // never a leading byte
    110xxxxx    2 total
    1110xxxx    3 total
    11110xxx    4 total

    11 10 01 01 xx xx xx xx 0...
    0xE5XX0000
    0xE5 << 24
*/

#ifdef SK_DEBUG
    static void assert_utf8_leadingbyte(unsigned c)
    {
        SkASSERT(c <= 0xF7);    // otherwise leading byte is too big (more than 4 bytes)
        SkASSERT((c & 0xC0) != 0x80);   // can't begin with a middle char
    }

    int SkUTF8_LeadByteToCount(unsigned c)
    {
        assert_utf8_leadingbyte(c);
        return (((0xE5 << 24) >> (c >> 4 << 1)) & 3) + 1;
    }
#else
    #define assert_utf8_leadingbyte(c)
#endif

int SkUTF8_CountUnichars(const char utf8[])
{
    SkASSERT(utf8);

    int count = 0;

    for (;;)
    {
        int c = *(const uint8_t*)utf8;
        if (c == 0)
            break;

        utf8 += SkUTF8_LeadByteToCount(c);
        count += 1;
    }
    return count;
}

int SkUTF8_CountUnichars(const char utf8[], size_t byteLength)
{
    SkASSERT(NULL != utf8 || 0 == byteLength);

    int         count = 0;
    const char* stop = utf8 + byteLength;

    while (utf8 < stop)
    {
        utf8 += SkUTF8_LeadByteToCount(*(const uint8_t*)utf8);
        count += 1;
    }
    return count;
}

SkUnichar SkUTF8_ToUnichar(const char utf8[])
{
    SkASSERT(NULL != utf8);

    const uint8_t*  p = (const uint8_t*)utf8;
    int             c = *p;
    int             hic = c << 24;

    assert_utf8_leadingbyte(c);

    if (hic < 0)
    {
        uint32_t mask = (uint32_t)~0x3F;
        hic <<= 1;
        do {
            c = (c << 6) | (*++p & 0x3F);
            mask <<= 5;
        } while ((hic <<= 1) < 0);
        c &= ~mask;
    }
    return c;
}

SkUnichar SkUTF8_NextUnichar(const char** ptr)
{
    SkASSERT(NULL != ptr && NULL != *ptr);

    const uint8_t*  p = (const uint8_t*)*ptr;
    int             c = *p;
    int             hic = c << 24;
    
    assert_utf8_leadingbyte(c);

    if (hic < 0)
    {
        uint32_t mask = (uint32_t)~0x3F;
        hic <<= 1;
        do {
            c = (c << 6) | (*++p & 0x3F);
            mask <<= 5;
        } while ((hic <<= 1) < 0);
        c &= ~mask;
    }
    *ptr = (char*)p + 1;
    return c;
}

SkUnichar SkUTF8_PrevUnichar(const char** ptr)
{
    SkASSERT(NULL != ptr && NULL != *ptr);

    const char* p = *ptr;
    
    if (*--p & 0x80)
        while (*--p & 0x40)
            ;

    *ptr = (char*)p;
    return SkUTF8_NextUnichar(&p);
}

size_t SkUTF8_FromUnichar(SkUnichar uni, char utf8[])
{
    if ((uint32_t)uni > 0x10FFFF)
    {
        SkASSERT(!"bad unichar");
        return 0;
    }

    if (uni <= 127)
    {
        if (utf8)
            *utf8 = (char)uni;
        return 1;
    }

    char    tmp[4];
    char*   p = tmp;
    size_t  count = 1;

    SkDEBUGCODE(SkUnichar orig = uni;)

    while (uni > 0x3F)
    {
        *p++ = (char)(0x80 | (uni & 0x3F));
        uni >>= 6;
        count += 1;
    }

    if (utf8)
    {
        p = tmp;
        utf8 += count;
        while (p < tmp + count - 1)
            *--utf8 = *p++;
        *--utf8 = (char)(~(0xFF >> count) | uni);
    }

    SkASSERT(utf8 == NULL || orig == SkUTF8_ToUnichar(utf8));
    return count;
}

////////////////////////////////////////////////////////////////////////////////////

int SkUTF16_CountUnichars(const uint16_t src[])
{
    SkASSERT(src);

    int count = 0;
    unsigned c;
    while ((c = *src++) != 0)
    {
        SkASSERT(!SkUTF16_IsLowSurrogate(c));
        if (SkUTF16_IsHighSurrogate(c))
        {
            c = *src++;
            SkASSERT(SkUTF16_IsLowSurrogate(c));
        }
        count += 1;
    }
    return count;
}

int SkUTF16_CountUnichars(const uint16_t src[], int numberOf16BitValues)
{
    SkASSERT(src);

    const uint16_t* stop = src + numberOf16BitValues;
    int count = 0;
    while (src < stop)
    {
        unsigned c = *src++;
        SkASSERT(!SkUTF16_IsLowSurrogate(c));
        if (SkUTF16_IsHighSurrogate(c))
        {
            SkASSERT(src < stop);
            c = *src++;
            SkASSERT(SkUTF16_IsLowSurrogate(c));
        }
        count += 1;
    }
    return count;
}

SkUnichar SkUTF16_NextUnichar(const uint16_t** srcPtr)
{
    SkASSERT(srcPtr && *srcPtr);
    
    const uint16_t* src = *srcPtr;
    SkUnichar       c = *src++;
    
    SkASSERT(!SkUTF16_IsLowSurrogate(c));
    if (SkUTF16_IsHighSurrogate(c))
    {
        unsigned c2 = *src++;
        SkASSERT(SkUTF16_IsLowSurrogate(c2));
        
        // c = ((c & 0x3FF) << 10) + (c2 & 0x3FF) + 0x10000
        // c = (((c & 0x3FF) + 64) << 10) + (c2 & 0x3FF)
        c = (c << 10) + c2 + (0x10000 - (0xD800 << 10) - 0xDC00);
    }
    *srcPtr = src;
    return c;
}

SkUnichar SkUTF16_PrevUnichar(const uint16_t** srcPtr)
{
    SkASSERT(srcPtr && *srcPtr);
    
    const uint16_t* src = *srcPtr;
    SkUnichar       c = *--src;
    
    SkASSERT(!SkUTF16_IsHighSurrogate(c));
    if (SkUTF16_IsLowSurrogate(c))
    {
        unsigned c2 = *--src;
        SkASSERT(SkUTF16_IsHighSurrogate(c2));
        c = (c2 << 10) + c + (0x10000 - (0xD800 << 10) - 0xDC00);
    }
    *srcPtr = src;
    return c;
}

size_t SkUTF16_FromUnichar(SkUnichar uni, uint16_t dst[])
{
    SkASSERT((unsigned)uni <= 0x10FFFF);

    int extra = (uni > 0xFFFF);

    if (dst)
    {
        if (extra)
        {
            // dst[0] = SkToU16(0xD800 | ((uni - 0x10000) >> 10));
            // dst[0] = SkToU16(0xD800 | ((uni >> 10) - 64));
            dst[0] = SkToU16((0xD800 - 64) + (uni >> 10));
            dst[1] = SkToU16(0xDC00 | (uni & 0x3FF));
            
            SkASSERT(SkUTF16_IsHighSurrogate(dst[0]));
            SkASSERT(SkUTF16_IsLowSurrogate(dst[1]));
        }
        else
        {
            dst[0] = SkToU16(uni);
            SkASSERT(!SkUTF16_IsHighSurrogate(dst[0]));
            SkASSERT(!SkUTF16_IsLowSurrogate(dst[0]));
        }
    }
    return 1 + extra;
}

size_t SkUTF16_ToUTF8(const uint16_t utf16[], int numberOf16BitValues, char utf8[])
{
    SkASSERT(numberOf16BitValues >= 0);
    if (numberOf16BitValues <= 0)
        return 0;

    SkASSERT(utf16 != NULL);
    
    const uint16_t* stop = utf16 + numberOf16BitValues;
    size_t          size = 0;
    
    if (utf8 == NULL)    // just count
    {
        while (utf16 < stop)
            size += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), NULL);
    }
    else
    {
        char* start = utf8;
        while (utf16 < stop)
            utf8 += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), utf8);
        size = utf8 - start;
    }
    return size;
}

////////////////////////////////////////////////////////////////////////////////////

#include <stdlib.h>

#if 0
static int round_to_K(size_t bytes)
{
    return (bytes + 512) >> 10;
}
#endif

SkAutoMemoryUsageProbe::SkAutoMemoryUsageProbe(const char label[])
    : fLabel(label)
{
#if 0
    struct mallinfo mi = mallinfo();

    fBytesAllocated = mi.uordblks;
#endif
}

SkAutoMemoryUsageProbe::~SkAutoMemoryUsageProbe()
{
#if 0
    struct mallinfo mi = mallinfo();

    printf("SkAutoMemoryUsageProbe ");
    if (fLabel)
        printf("<%s> ", fLabel);
    printf("delta %dK, current total allocated %dK\n",
            round_to_K(mi.uordblks - fBytesAllocated),
            round_to_K(mi.uordblks));
#endif
}

////////////////////////////////////////////////////////////////////////////////////

#ifdef SK_DEBUG

#include "SkRandom.h"
#include "SkTSearch.h"
#include "SkTSort.h"

#define kSEARCH_COUNT   91

#ifdef SK_SUPPORT_UNITTEST
static void test_search()
{
    int         i, array[kSEARCH_COUNT];
    SkRandom    rand;

    for (i = 0; i < kSEARCH_COUNT; i++)
        array[i] = rand.nextS();

    SkTHeapSort<int>(array, kSEARCH_COUNT);
    // make sure we got sorted properly
    for (i = 1; i < kSEARCH_COUNT; i++)
        SkASSERT(array[i-1] <= array[i]);

    // make sure we can find all of our values
    for (i = 0; i < kSEARCH_COUNT; i++)
    {
        int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
        SkASSERT(index == i);
    }

    // make sure that random values are either found, or the correct
    // insertion index is returned
    for (i = 0; i < 10000; i++)
    {
        int value = rand.nextS();
        int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));

        if (index >= 0)
            SkASSERT(index < kSEARCH_COUNT && array[index] == value);
        else
        {
            index = ~index;
            SkASSERT(index <= kSEARCH_COUNT);
            if (index < kSEARCH_COUNT)
            {
                SkASSERT(value < array[index]);
                if (index > 0)
                    SkASSERT(value > array[index - 1]);
            }
            else    // we should append the new value
            {
                SkASSERT(value > array[kSEARCH_COUNT - 1]);
            }
        }
    }
}

static void test_utf16()
{
    static const SkUnichar gUni[] = {
        0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234
    };
    
    uint16_t buf[2];
    
    for (unsigned i = 0; i < SK_ARRAY_COUNT(gUni); i++)
    {
        size_t count = SkUTF16_FromUnichar(gUni[i], buf);
        SkASSERT(count == 2);
        size_t count2 = SkUTF16_CountUnichars(buf, 2);
        SkASSERT(count2 == 1);
        const uint16_t* ptr = buf;
        SkUnichar c = SkUTF16_NextUnichar(&ptr);
        SkASSERT(c == gUni[i]);
        SkASSERT(ptr - buf == 2);
    }
}

#endif

void SkUtils::UnitTest()
{
#ifdef SK_SUPPORT_UNITTEST
    static const struct {
        const char* fUtf8;
        SkUnichar   fUni;
    } gTest[] = {
        { "a",                  'a' },
        { "\xC3\x83",           (3 << 6) | 3    },
        { "\xE3\x83\x83",       (3 << 12) | (3 << 6) | 3    },
        { "\xF3\x83\x83\x83",   (3 << 18) | (3 << 12) | (3 << 6) | 3    }
    };

    for (unsigned i = 0; i < SK_ARRAY_COUNT(gTest); i++)
    {
        const char* p = gTest[i].fUtf8;
        int         n = SkUTF8_CountUnichars(p);
        SkUnichar   u0 = SkUTF8_ToUnichar(gTest[i].fUtf8);
        SkUnichar   u1 = SkUTF8_NextUnichar(&p);

        SkASSERT(n == 1);
        SkASSERT(u0 == u1);
        SkASSERT(u0 == gTest[i].fUni);
        SkASSERT(p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8));
    }
    
    test_utf16();

    test_search();
#endif
}

#endif