// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sql/connection.h" #include #include #include #include #include #include "base/bind.h" #include "base/debug/dump_without_crashing.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/format_macros.h" #include "base/json/json_file_value_serializer.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/message_loop/message_loop.h" #include "base/metrics/histogram.h" #include "base/metrics/sparse_histogram.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/strings/utf_string_conversions.h" #include "base/synchronization/lock.h" #include "base/trace_event/memory_dump_manager.h" #include "sql/connection_memory_dump_provider.h" #include "sql/meta_table.h" #include "sql/statement.h" #include "third_party/sqlite/sqlite3.h" #if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE) #include "third_party/sqlite/src/ext/icu/sqliteicu.h" #endif namespace { // Spin for up to a second waiting for the lock to clear when setting // up the database. // TODO(shess): Better story on this. http://crbug.com/56559 const int kBusyTimeoutSeconds = 1; bool g_mmap_disabled_default = false; class ScopedBusyTimeout { public: explicit ScopedBusyTimeout(sqlite3* db) : db_(db) { } ~ScopedBusyTimeout() { sqlite3_busy_timeout(db_, 0); } int SetTimeout(base::TimeDelta timeout) { DCHECK_LT(timeout.InMilliseconds(), INT_MAX); return sqlite3_busy_timeout(db_, static_cast(timeout.InMilliseconds())); } private: sqlite3* db_; }; // Helper to "safely" enable writable_schema. No error checking // because it is reasonable to just forge ahead in case of an error. // If turning it on fails, then most likely nothing will work, whereas // if turning it off fails, it only matters if some code attempts to // continue working with the database and tries to modify the // sqlite_master table (none of our code does this). class ScopedWritableSchema { public: explicit ScopedWritableSchema(sqlite3* db) : db_(db) { sqlite3_exec(db_, "PRAGMA writable_schema=1", NULL, NULL, NULL); } ~ScopedWritableSchema() { sqlite3_exec(db_, "PRAGMA writable_schema=0", NULL, NULL, NULL); } private: sqlite3* db_; }; // Helper to wrap the sqlite3_backup_*() step of Raze(). Return // SQLite error code from running the backup step. int BackupDatabase(sqlite3* src, sqlite3* dst, const char* db_name) { DCHECK_NE(src, dst); sqlite3_backup* backup = sqlite3_backup_init(dst, db_name, src, db_name); if (!backup) { // Since this call only sets things up, this indicates a gross // error in SQLite. DLOG(FATAL) << "Unable to start sqlite3_backup(): " << sqlite3_errmsg(dst); return sqlite3_errcode(dst); } // -1 backs up the entire database. int rc = sqlite3_backup_step(backup, -1); int pages = sqlite3_backup_pagecount(backup); sqlite3_backup_finish(backup); // If successful, exactly one page should have been backed up. If // this breaks, check this function to make sure assumptions aren't // being broken. if (rc == SQLITE_DONE) DCHECK_EQ(pages, 1); return rc; } // Be very strict on attachment point. SQLite can handle a much wider // character set with appropriate quoting, but Chromium code should // just use clean names to start with. bool ValidAttachmentPoint(const char* attachment_point) { for (size_t i = 0; attachment_point[i]; ++i) { if (!((attachment_point[i] >= '0' && attachment_point[i] <= '9') || (attachment_point[i] >= 'a' && attachment_point[i] <= 'z') || (attachment_point[i] >= 'A' && attachment_point[i] <= 'Z') || attachment_point[i] == '_')) { return false; } } return true; } void RecordSqliteMemory10Min() { const int64_t used = sqlite3_memory_used(); UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.TenMinutes", used / 1024); } void RecordSqliteMemoryHour() { const int64_t used = sqlite3_memory_used(); UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneHour", used / 1024); } void RecordSqliteMemoryDay() { const int64_t used = sqlite3_memory_used(); UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneDay", used / 1024); } void RecordSqliteMemoryWeek() { const int64_t used = sqlite3_memory_used(); UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneWeek", used / 1024); } // SQLite automatically calls sqlite3_initialize() lazily, but // sqlite3_initialize() uses double-checked locking and thus can have // data races. // // TODO(shess): Another alternative would be to have // sqlite3_initialize() called as part of process bring-up. If this // is changed, remove the dynamic_annotations dependency in sql.gyp. base::LazyInstance::Leaky g_sqlite_init_lock = LAZY_INSTANCE_INITIALIZER; void InitializeSqlite() { base::AutoLock lock(g_sqlite_init_lock.Get()); static bool first_call = true; if (first_call) { sqlite3_initialize(); // Schedule callback to record memory footprint histograms at 10m, 1h, and // 1d. There may not be a message loop in tests. if (base::MessageLoop::current()) { base::MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&RecordSqliteMemory10Min), base::TimeDelta::FromMinutes(10)); base::MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&RecordSqliteMemoryHour), base::TimeDelta::FromHours(1)); base::MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&RecordSqliteMemoryDay), base::TimeDelta::FromDays(1)); base::MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&RecordSqliteMemoryWeek), base::TimeDelta::FromDays(7)); } first_call = false; } } // Helper to get the sqlite3_file* associated with the "main" database. int GetSqlite3File(sqlite3* db, sqlite3_file** file) { *file = NULL; int rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_FILE_POINTER, file); if (rc != SQLITE_OK) return rc; // TODO(shess): NULL in file->pMethods has been observed on android_dbg // content_unittests, even though it should not be possible. // http://crbug.com/329982 if (!*file || !(*file)->pMethods) return SQLITE_ERROR; return rc; } // Convenience to get the sqlite3_file* and the size for the "main" database. int GetSqlite3FileAndSize(sqlite3* db, sqlite3_file** file, sqlite3_int64* db_size) { int rc = GetSqlite3File(db, file); if (rc != SQLITE_OK) return rc; return (*file)->pMethods->xFileSize(*file, db_size); } // This should match UMA_HISTOGRAM_MEDIUM_TIMES(). base::HistogramBase* GetMediumTimeHistogram(const std::string& name) { return base::Histogram::FactoryTimeGet( name, base::TimeDelta::FromMilliseconds(10), base::TimeDelta::FromMinutes(3), 50, base::HistogramBase::kUmaTargetedHistogramFlag); } std::string AsUTF8ForSQL(const base::FilePath& path) { #if defined(OS_WIN) return base::WideToUTF8(path.value()); #elif defined(OS_POSIX) return path.value(); #endif } } // namespace namespace sql { // static Connection::ErrorIgnorerCallback* Connection::current_ignorer_cb_ = NULL; // static bool Connection::ShouldIgnoreSqliteError(int error) { if (!current_ignorer_cb_) return false; return current_ignorer_cb_->Run(error); } // static bool Connection::ShouldIgnoreSqliteCompileError(int error) { // Put this first in case tests need to see that the check happened. if (ShouldIgnoreSqliteError(error)) return true; // Trim extended error codes. int basic_error = error & 0xff; // These errors relate more to the runtime context of the system than to // errors with a SQL statement or with the schema, so they aren't generally // interesting to flag. This list is not comprehensive. return basic_error == SQLITE_BUSY || basic_error == SQLITE_NOTADB || basic_error == SQLITE_CORRUPT; } // static void Connection::set_mmap_disabled_by_default() { g_mmap_disabled_default = true; } void Connection::ReportDiagnosticInfo(int extended_error, Statement* stmt) { AssertIOAllowed(); std::string debug_info; const int error = (extended_error & 0xFF); if (error == SQLITE_CORRUPT) { // CollectCorruptionInfo() is implemented in terms of sql::Connection, // prevent reentrant calls to the error callback. // TODO(shess): Rewrite IntegrityCheckHelper() in terms of raw SQLite. ErrorCallback original_callback = std::move(error_callback_); reset_error_callback(); debug_info = CollectCorruptionInfo(); error_callback_ = std::move(original_callback); } else { debug_info = CollectErrorInfo(extended_error, stmt); } if (!debug_info.empty() && RegisterIntentToUpload()) { char debug_buf[2000]; base::strlcpy(debug_buf, debug_info.c_str(), arraysize(debug_buf)); base::debug::Alias(&debug_buf); base::debug::DumpWithoutCrashing(); } } // static void Connection::SetErrorIgnorer(Connection::ErrorIgnorerCallback* cb) { CHECK(current_ignorer_cb_ == NULL); current_ignorer_cb_ = cb; } // static void Connection::ResetErrorIgnorer() { CHECK(current_ignorer_cb_); current_ignorer_cb_ = NULL; } bool StatementID::operator<(const StatementID& other) const { if (number_ != other.number_) return number_ < other.number_; return strcmp(str_, other.str_) < 0; } Connection::StatementRef::StatementRef(Connection* connection, sqlite3_stmt* stmt, bool was_valid) : connection_(connection), stmt_(stmt), was_valid_(was_valid) { if (connection) connection_->StatementRefCreated(this); } Connection::StatementRef::~StatementRef() { if (connection_) connection_->StatementRefDeleted(this); Close(false); } void Connection::StatementRef::Close(bool forced) { if (stmt_) { // Call to AssertIOAllowed() cannot go at the beginning of the function // because Close() is called unconditionally from destructor to clean // connection_. And if this is inactive statement this won't cause any // disk access and destructor most probably will be called on thread // not allowing disk access. // TODO(paivanof@gmail.com): This should move to the beginning // of the function. http://crbug.com/136655. AssertIOAllowed(); sqlite3_finalize(stmt_); stmt_ = NULL; } connection_ = NULL; // The connection may be getting deleted. // Forced close is expected to happen from a statement error // handler. In that case maintain the sense of |was_valid_| which // previously held for this ref. was_valid_ = was_valid_ && forced; } Connection::Connection() : db_(NULL), page_size_(0), cache_size_(0), exclusive_locking_(false), restrict_to_user_(false), transaction_nesting_(0), needs_rollback_(false), in_memory_(false), poisoned_(false), mmap_disabled_(g_mmap_disabled_default), mmap_enabled_(false), total_changes_at_last_release_(0), stats_histogram_(NULL), commit_time_histogram_(NULL), autocommit_time_histogram_(NULL), update_time_histogram_(NULL), query_time_histogram_(NULL), clock_(new TimeSource()) { } Connection::~Connection() { Close(); } void Connection::RecordEvent(Events event, size_t count) { for (size_t i = 0; i < count; ++i) { UMA_HISTOGRAM_ENUMERATION("Sqlite.Stats", event, EVENT_MAX_VALUE); } if (stats_histogram_) { for (size_t i = 0; i < count; ++i) { stats_histogram_->Add(event); } } } void Connection::RecordCommitTime(const base::TimeDelta& delta) { RecordUpdateTime(delta); UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.CommitTime", delta); if (commit_time_histogram_) commit_time_histogram_->AddTime(delta); } void Connection::RecordAutoCommitTime(const base::TimeDelta& delta) { RecordUpdateTime(delta); UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.AutoCommitTime", delta); if (autocommit_time_histogram_) autocommit_time_histogram_->AddTime(delta); } void Connection::RecordUpdateTime(const base::TimeDelta& delta) { RecordQueryTime(delta); UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.UpdateTime", delta); if (update_time_histogram_) update_time_histogram_->AddTime(delta); } void Connection::RecordQueryTime(const base::TimeDelta& delta) { UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.QueryTime", delta); if (query_time_histogram_) query_time_histogram_->AddTime(delta); } void Connection::RecordTimeAndChanges( const base::TimeDelta& delta, bool read_only) { if (read_only) { RecordQueryTime(delta); } else { const int changes = sqlite3_changes(db_); if (sqlite3_get_autocommit(db_)) { RecordAutoCommitTime(delta); RecordEvent(EVENT_CHANGES_AUTOCOMMIT, changes); } else { RecordUpdateTime(delta); RecordEvent(EVENT_CHANGES, changes); } } } bool Connection::Open(const base::FilePath& path) { if (!histogram_tag_.empty()) { int64_t size_64 = 0; if (base::GetFileSize(path, &size_64)) { size_t sample = static_cast(size_64 / 1024); std::string full_histogram_name = "Sqlite.SizeKB." + histogram_tag_; base::HistogramBase* histogram = base::Histogram::FactoryGet( full_histogram_name, 1, 1000000, 50, base::HistogramBase::kUmaTargetedHistogramFlag); if (histogram) histogram->Add(sample); UMA_HISTOGRAM_COUNTS("Sqlite.SizeKB", sample); } } return OpenInternal(AsUTF8ForSQL(path), RETRY_ON_POISON); } bool Connection::OpenInMemory() { in_memory_ = true; return OpenInternal(":memory:", NO_RETRY); } bool Connection::OpenTemporary() { return OpenInternal("", NO_RETRY); } void Connection::CloseInternal(bool forced) { // TODO(shess): Calling "PRAGMA journal_mode = DELETE" at this point // will delete the -journal file. For ChromiumOS or other more // embedded systems, this is probably not appropriate, whereas on // desktop it might make some sense. // sqlite3_close() needs all prepared statements to be finalized. // Release cached statements. statement_cache_.clear(); // With cached statements released, in-use statements will remain. // Closing the database while statements are in use is an API // violation, except for forced close (which happens from within a // statement's error handler). DCHECK(forced || open_statements_.empty()); // Deactivate any outstanding statements so sqlite3_close() works. for (StatementRefSet::iterator i = open_statements_.begin(); i != open_statements_.end(); ++i) (*i)->Close(forced); open_statements_.clear(); if (db_) { // Call to AssertIOAllowed() cannot go at the beginning of the function // because Close() must be called from destructor to clean // statement_cache_, it won't cause any disk access and it most probably // will happen on thread not allowing disk access. // TODO(paivanof@gmail.com): This should move to the beginning // of the function. http://crbug.com/136655. AssertIOAllowed(); // Reseting acquires a lock to ensure no dump is happening on the database // at the same time. Unregister takes ownership of provider and it is safe // since the db is reset. memory_dump_provider_ could be null if db_ was // poisoned. if (memory_dump_provider_) { memory_dump_provider_->ResetDatabase(); base::trace_event::MemoryDumpManager::GetInstance() ->UnregisterAndDeleteDumpProviderSoon( std::move(memory_dump_provider_)); } int rc = sqlite3_close(db_); if (rc != SQLITE_OK) { UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.CloseFailure", rc); DLOG(FATAL) << "sqlite3_close failed: " << GetErrorMessage(); } } db_ = NULL; } void Connection::Close() { // If the database was already closed by RazeAndClose(), then no // need to close again. Clear the |poisoned_| bit so that incorrect // API calls are caught. if (poisoned_) { poisoned_ = false; return; } CloseInternal(false); } void Connection::Preload() { AssertIOAllowed(); if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Cannot preload null db"; return; } // Use local settings if provided, otherwise use documented defaults. The // actual results could be fetching via PRAGMA calls. const int page_size = page_size_ ? page_size_ : 1024; sqlite3_int64 preload_size = page_size * (cache_size_ ? cache_size_ : 2000); if (preload_size < 1) return; sqlite3_file* file = NULL; sqlite3_int64 file_size = 0; int rc = GetSqlite3FileAndSize(db_, &file, &file_size); if (rc != SQLITE_OK) return; // Don't preload more than the file contains. if (preload_size > file_size) preload_size = file_size; scoped_ptr buf(new char[page_size]); for (sqlite3_int64 pos = 0; pos < preload_size; pos += page_size) { rc = file->pMethods->xRead(file, buf.get(), page_size, pos); // TODO(shess): Consider calling OnSqliteError(). if (rc != SQLITE_OK) return; } } // SQLite keeps unused pages associated with a connection in a cache. It asks // the cache for pages by an id, and if the page is present and the database is // unchanged, it considers the content of the page valid and doesn't read it // from disk. When memory-mapped I/O is enabled, on read SQLite uses page // structures created from the memory map data before consulting the cache. On // write SQLite creates a new in-memory page structure, copies the data from the // memory map, and later writes it, releasing the updated page back to the // cache. // // This means that in memory-mapped mode, the contents of the cached pages are // not re-used for reads, but they are re-used for writes if the re-written page // is still in the cache. The implementation of sqlite3_db_release_memory() as // of SQLite 3.8.7.4 frees all pages from pcaches associated with the // connection, so it should free these pages. // // Unfortunately, the zero page is also freed. That page is never accessed // using memory-mapped I/O, and the cached copy can be re-used after verifying // the file change counter on disk. Also, fresh pages from cache receive some // pager-level initialization before they can be used. Since the information // involved will immediately be accessed in various ways, it is unclear if the // additional overhead is material, or just moving processor cache effects // around. // // TODO(shess): It would be better to release the pages immediately when they // are no longer needed. This would basically happen after SQLite commits a // transaction. I had implemented a pcache wrapper to do this, but it involved // layering violations, and it had to be setup before any other sqlite call, // which was brittle. Also, for large files it would actually make sense to // maintain the existing pcache behavior for blocks past the memory-mapped // segment. I think drh would accept a reasonable implementation of the overall // concept for upstreaming to SQLite core. // // TODO(shess): Another possibility would be to set the cache size small, which // would keep the zero page around, plus some pre-initialized pages, and SQLite // can manage things. The downside is that updates larger than the cache would // spill to the journal. That could be compensated by setting cache_spill to // false. The downside then is that it allows open-ended use of memory for // large transactions. // // TODO(shess): The TrimMemory() trick of bouncing the cache size would also // work. There could be two prepared statements, one for cache_size=1 one for // cache_size=goal. void Connection::ReleaseCacheMemoryIfNeeded(bool implicit_change_performed) { // The database could have been closed during a transaction as part of error // recovery. if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return; } // If memory-mapping is not enabled, the page cache helps performance. if (!mmap_enabled_) return; // On caller request, force the change comparison to fail. Done before the // transaction-nesting test so that the signal can carry to transaction // commit. if (implicit_change_performed) --total_changes_at_last_release_; // Cached pages may be re-used within the same transaction. if (transaction_nesting()) return; // If no changes have been made, skip flushing. This allows the first page of // the database to remain in cache across multiple reads. const int total_changes = sqlite3_total_changes(db_); if (total_changes == total_changes_at_last_release_) return; total_changes_at_last_release_ = total_changes; sqlite3_db_release_memory(db_); } base::FilePath Connection::DbPath() const { if (!is_open()) return base::FilePath(); const char* path = sqlite3_db_filename(db_, "main"); const base::StringPiece db_path(path); #if defined(OS_WIN) return base::FilePath(base::UTF8ToWide(db_path)); #elif defined(OS_POSIX) return base::FilePath(db_path); #else NOTREACHED(); return base::FilePath(); #endif } // Data is persisted in a file shared between databases in the same directory. // The "sqlite-diag" file contains a dictionary with the version number, and an // array of histogram tags for databases which have been dumped. bool Connection::RegisterIntentToUpload() const { static const char* kVersionKey = "version"; static const char* kDiagnosticDumpsKey = "DiagnosticDumps"; static int kVersion = 1; AssertIOAllowed(); if (histogram_tag_.empty()) return false; if (!is_open()) return false; if (in_memory_) return false; const base::FilePath db_path = DbPath(); if (db_path.empty()) return false; // Put the collection of diagnostic data next to the databases. In most // cases, this is the profile directory, but safe-browsing stores a Cookies // file in the directory above the profile directory. base::FilePath breadcrumb_path( db_path.DirName().Append(FILE_PATH_LITERAL("sqlite-diag"))); // Lock against multiple updates to the diagnostics file. This code should // seldom be called in the first place, and when called it should seldom be // called for multiple databases, and when called for multiple databases there // is _probably_ something systemic wrong with the user's system. So the lock // should never be contended, but when it is the database experience is // already bad. base::AutoLock lock(g_sqlite_init_lock.Get()); scoped_ptr root; if (!base::PathExists(breadcrumb_path)) { scoped_ptr root_dict(new base::DictionaryValue()); root_dict->SetInteger(kVersionKey, kVersion); scoped_ptr dumps(new base::ListValue); dumps->AppendString(histogram_tag_); root_dict->Set(kDiagnosticDumpsKey, std::move(dumps)); root = std::move(root_dict); } else { // Failure to read a valid dictionary implies that something is going wrong // on the system. JSONFileValueDeserializer deserializer(breadcrumb_path); scoped_ptr read_root( deserializer.Deserialize(nullptr, nullptr)); if (!read_root.get()) return false; scoped_ptr root_dict = base::DictionaryValue::From(std::move(read_root)); if (!root_dict) return false; // Don't upload if the version is missing or newer. int version = 0; if (!root_dict->GetInteger(kVersionKey, &version) || version > kVersion) return false; base::ListValue* dumps = nullptr; if (!root_dict->GetList(kDiagnosticDumpsKey, &dumps)) return false; const size_t size = dumps->GetSize(); for (size_t i = 0; i < size; ++i) { std::string s; // Don't upload if the value isn't a string, or indicates a prior upload. if (!dumps->GetString(i, &s) || s == histogram_tag_) return false; } // Record intention to proceed with upload. dumps->AppendString(histogram_tag_); root = std::move(root_dict); } const base::FilePath breadcrumb_new = breadcrumb_path.AddExtension(FILE_PATH_LITERAL("new")); base::DeleteFile(breadcrumb_new, false); // No upload if the breadcrumb file cannot be updated. // TODO(shess): Consider ImportantFileWriter::WriteFileAtomically() to land // the data on disk. For now, losing the data is not a big problem, so the // sync overhead would probably not be worth it. JSONFileValueSerializer serializer(breadcrumb_new); if (!serializer.Serialize(*root)) return false; if (!base::PathExists(breadcrumb_new)) return false; if (!base::ReplaceFile(breadcrumb_new, breadcrumb_path, nullptr)) { base::DeleteFile(breadcrumb_new, false); return false; } return true; } std::string Connection::CollectErrorInfo(int error, Statement* stmt) const { // Buffer for accumulating debugging info about the error. Place // more-relevant information earlier, in case things overflow the // fixed-size reporting buffer. std::string debug_info; // The error message from the failed operation. base::StringAppendF(&debug_info, "db error: %d/%s\n", GetErrorCode(), GetErrorMessage()); // TODO(shess): |error| and |GetErrorCode()| should always be the same, but // reading code does not entirely convince me. Remove if they turn out to be // the same. if (error != GetErrorCode()) base::StringAppendF(&debug_info, "reported error: %d\n", error); // System error information. Interpretation of Windows errors is different // from posix. #if defined(OS_WIN) base::StringAppendF(&debug_info, "LastError: %d\n", GetLastErrno()); #elif defined(OS_POSIX) base::StringAppendF(&debug_info, "errno: %d\n", GetLastErrno()); #else NOTREACHED(); // Add appropriate log info. #endif if (stmt) { base::StringAppendF(&debug_info, "statement: %s\n", stmt->GetSQLStatement()); } else { base::StringAppendF(&debug_info, "statement: NULL\n"); } // SQLITE_ERROR often indicates some sort of mismatch between the statement // and the schema, possibly due to a failed schema migration. if (error == SQLITE_ERROR) { const char* kVersionSql = "SELECT value FROM meta WHERE key = 'version'"; sqlite3_stmt* s; int rc = sqlite3_prepare_v2(db_, kVersionSql, -1, &s, nullptr); if (rc == SQLITE_OK) { rc = sqlite3_step(s); if (rc == SQLITE_ROW) { base::StringAppendF(&debug_info, "version: %d\n", sqlite3_column_int(s, 0)); } else if (rc == SQLITE_DONE) { debug_info += "version: none\n"; } else { base::StringAppendF(&debug_info, "version: error %d\n", rc); } sqlite3_finalize(s); } else { base::StringAppendF(&debug_info, "version: prepare error %d\n", rc); } debug_info += "schema:\n"; // sqlite_master has columns: // type - "index" or "table". // name - name of created element. // tbl_name - name of element, or target table in case of index. // rootpage - root page of the element in database file. // sql - SQL to create the element. // In general, the |sql| column is sufficient to derive the other columns. // |rootpage| is not interesting for debugging, without the contents of the // database. The COALESCE is because certain automatic elements will have a // |name| but no |sql|, const char* kSchemaSql = "SELECT COALESCE(sql, name) FROM sqlite_master"; rc = sqlite3_prepare_v2(db_, kSchemaSql, -1, &s, nullptr); if (rc == SQLITE_OK) { while ((rc = sqlite3_step(s)) == SQLITE_ROW) { base::StringAppendF(&debug_info, "%s\n", sqlite3_column_text(s, 0)); } if (rc != SQLITE_DONE) base::StringAppendF(&debug_info, "error %d\n", rc); sqlite3_finalize(s); } else { base::StringAppendF(&debug_info, "prepare error %d\n", rc); } } return debug_info; } // TODO(shess): Since this is only called in an error situation, it might be // prudent to rewrite in terms of SQLite API calls, and mark the function const. std::string Connection::CollectCorruptionInfo() { AssertIOAllowed(); // If the file cannot be accessed it is unlikely that an integrity check will // turn up actionable information. const base::FilePath db_path = DbPath(); int64_t db_size = -1; if (!base::GetFileSize(db_path, &db_size) || db_size < 0) return std::string(); // Buffer for accumulating debugging info about the error. Place // more-relevant information earlier, in case things overflow the // fixed-size reporting buffer. std::string debug_info; base::StringAppendF(&debug_info, "SQLITE_CORRUPT, db size %" PRId64 "\n", db_size); // Only check files up to 8M to keep things from blocking too long. const int64_t kMaxIntegrityCheckSize = 8192 * 1024; if (db_size > kMaxIntegrityCheckSize) { debug_info += "integrity_check skipped due to size\n"; } else { std::vector messages; // TODO(shess): FullIntegrityCheck() splits into a vector while this joins // into a string. Probably should be refactored. const base::TimeTicks before = base::TimeTicks::Now(); FullIntegrityCheck(&messages); base::StringAppendF( &debug_info, "integrity_check %" PRId64 " ms, %" PRIuS " records:\n", (base::TimeTicks::Now() - before).InMilliseconds(), messages.size()); // SQLite returns up to 100 messages by default, trim deeper to // keep close to the 2000-character size limit for dumping. const size_t kMaxMessages = 20; for (size_t i = 0; i < kMaxMessages && i < messages.size(); ++i) { base::StringAppendF(&debug_info, "%s\n", messages[i].c_str()); } } return debug_info; } size_t Connection::GetAppropriateMmapSize() { AssertIOAllowed(); #if defined(OS_IOS) // iOS SQLite does not support memory mapping. return 0; #endif // How much to map if no errors are found. 50MB encompasses the 99th // percentile of Chrome databases in the wild, so this should be good. const size_t kMmapEverything = 256 * 1024 * 1024; // If the database doesn't have a place to track progress, assume the best. // This will happen when new databases are created, or if a database doesn't // use a meta table. sql::MetaTable::Init() will preload kMmapSuccess. // TODO(shess): Databases not using meta include: // DOMStorageDatabase (localstorage) // ActivityDatabase (extensions activity log) // PredictorDatabase (prefetch and autocomplete predictor data) // SyncDirectory (sync metadata storage) // For now, these all have mmap disabled to allow other databases to get the // default-enable path. sqlite-diag could be an alternative for all but // DOMStorageDatabase, which creates many small databases. // http://crbug.com/537742 if (!MetaTable::DoesTableExist(this)) { RecordOneEvent(EVENT_MMAP_META_MISSING); return kMmapEverything; } int64_t mmap_ofs = 0; if (!MetaTable::GetMmapStatus(this, &mmap_ofs)) { RecordOneEvent(EVENT_MMAP_META_FAILURE_READ); return 0; } // Database read failed in the past, don't memory map. if (mmap_ofs == MetaTable::kMmapFailure) { RecordOneEvent(EVENT_MMAP_FAILED); return 0; } else if (mmap_ofs != MetaTable::kMmapSuccess) { // Continue reading from previous offset. DCHECK_GE(mmap_ofs, 0); // TODO(shess): Could this reading code be shared with Preload()? It would // require locking twice (this code wouldn't be able to access |db_size| so // the helper would have to return amount read). // Read more of the database looking for errors. The VFS interface is used // to assure that the reads are valid for SQLite. |g_reads_allowed| is used // to limit checking to 20MB per run of Chromium. sqlite3_file* file = NULL; sqlite3_int64 db_size = 0; if (SQLITE_OK != GetSqlite3FileAndSize(db_, &file, &db_size)) { RecordOneEvent(EVENT_MMAP_VFS_FAILURE); return 0; } // Read the data left, or |g_reads_allowed|, whichever is smaller. // |g_reads_allowed| limits the total amount of I/O to spend verifying data // in a single Chromium run. sqlite3_int64 amount = db_size - mmap_ofs; if (amount < 0) amount = 0; if (amount > 0) { base::AutoLock lock(g_sqlite_init_lock.Get()); static sqlite3_int64 g_reads_allowed = 20 * 1024 * 1024; if (g_reads_allowed < amount) amount = g_reads_allowed; g_reads_allowed -= amount; } // |amount| can be <= 0 if |g_reads_allowed| ran out of quota, or if the // database was truncated after a previous pass. if (amount <= 0 && mmap_ofs < db_size) { DCHECK_EQ(0, amount); RecordOneEvent(EVENT_MMAP_SUCCESS_NO_PROGRESS); } else { static const int kPageSize = 4096; char buf[kPageSize]; while (amount > 0) { int rc = file->pMethods->xRead(file, buf, sizeof(buf), mmap_ofs); if (rc == SQLITE_OK) { mmap_ofs += sizeof(buf); amount -= sizeof(buf); } else if (rc == SQLITE_IOERR_SHORT_READ) { // Reached EOF for a database with page size < |kPageSize|. mmap_ofs = db_size; break; } else { // TODO(shess): Consider calling OnSqliteError(). mmap_ofs = MetaTable::kMmapFailure; break; } } // Log these events after update to distinguish meta update failure. Events event; if (mmap_ofs >= db_size) { mmap_ofs = MetaTable::kMmapSuccess; event = EVENT_MMAP_SUCCESS_NEW; } else if (mmap_ofs > 0) { event = EVENT_MMAP_SUCCESS_PARTIAL; } else { DCHECK_EQ(MetaTable::kMmapFailure, mmap_ofs); event = EVENT_MMAP_FAILED_NEW; } if (!MetaTable::SetMmapStatus(this, mmap_ofs)) { RecordOneEvent(EVENT_MMAP_META_FAILURE_UPDATE); return 0; } RecordOneEvent(event); } } if (mmap_ofs == MetaTable::kMmapFailure) return 0; if (mmap_ofs == MetaTable::kMmapSuccess) return kMmapEverything; return mmap_ofs; } void Connection::TrimMemory(bool aggressively) { if (!db_) return; // TODO(shess): investigate using sqlite3_db_release_memory() when possible. int original_cache_size; { Statement sql_get_original(GetUniqueStatement("PRAGMA cache_size")); if (!sql_get_original.Step()) { DLOG(WARNING) << "Could not get cache size " << GetErrorMessage(); return; } original_cache_size = sql_get_original.ColumnInt(0); } int shrink_cache_size = aggressively ? 1 : (original_cache_size / 2); // Force sqlite to try to reduce page cache usage. const std::string sql_shrink = base::StringPrintf("PRAGMA cache_size=%d", shrink_cache_size); if (!Execute(sql_shrink.c_str())) DLOG(WARNING) << "Could not shrink cache size: " << GetErrorMessage(); // Restore cache size. const std::string sql_restore = base::StringPrintf("PRAGMA cache_size=%d", original_cache_size); if (!Execute(sql_restore.c_str())) DLOG(WARNING) << "Could not restore cache size: " << GetErrorMessage(); } // Create an in-memory database with the existing database's page // size, then backup that database over the existing database. bool Connection::Raze() { AssertIOAllowed(); if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; return false; } if (transaction_nesting_ > 0) { DLOG(FATAL) << "Cannot raze within a transaction"; return false; } sql::Connection null_db; if (!null_db.OpenInMemory()) { DLOG(FATAL) << "Unable to open in-memory database."; return false; } if (page_size_) { // Enforce SQLite restrictions on |page_size_|. DCHECK(!(page_size_ & (page_size_ - 1))) << " page_size_ " << page_size_ << " is not a power of two."; const int kSqliteMaxPageSize = 32768; // from sqliteLimit.h DCHECK_LE(page_size_, kSqliteMaxPageSize); const std::string sql = base::StringPrintf("PRAGMA page_size=%d", page_size_); if (!null_db.Execute(sql.c_str())) return false; } #if defined(OS_ANDROID) // Android compiles with SQLITE_DEFAULT_AUTOVACUUM. Unfortunately, // in-memory databases do not respect this define. // TODO(shess): Figure out a way to set this without using platform // specific code. AFAICT from sqlite3.c, the only way to do it // would be to create an actual filesystem database, which is // unfortunate. if (!null_db.Execute("PRAGMA auto_vacuum = 1")) return false; #endif // The page size doesn't take effect until a database has pages, and // at this point the null database has none. Changing the schema // version will create the first page. This will not affect the // schema version in the resulting database, as SQLite's backup // implementation propagates the schema version from the original // connection to the new version of the database, incremented by one // so that other readers see the schema change and act accordingly. if (!null_db.Execute("PRAGMA schema_version = 1")) return false; // SQLite tracks the expected number of database pages in the first // page, and if it does not match the total retrieved from a // filesystem call, treats the database as corrupt. This situation // breaks almost all SQLite calls. "PRAGMA writable_schema" can be // used to hint to SQLite to soldier on in that case, specifically // for purposes of recovery. [See SQLITE_CORRUPT_BKPT case in // sqlite3.c lockBtree().] // TODO(shess): With this, "PRAGMA auto_vacuum" and "PRAGMA // page_size" can be used to query such a database. ScopedWritableSchema writable_schema(db_); const char* kMain = "main"; int rc = BackupDatabase(null_db.db_, db_, kMain); UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabase",rc); // The destination database was locked. if (rc == SQLITE_BUSY) { return false; } // SQLITE_NOTADB can happen if page 1 of db_ exists, but is not // formatted correctly. SQLITE_IOERR_SHORT_READ can happen if db_ // isn't even big enough for one page. Either way, reach in and // truncate it before trying again. // TODO(shess): Maybe it would be worthwhile to just truncate from // the get-go? if (rc == SQLITE_NOTADB || rc == SQLITE_IOERR_SHORT_READ) { sqlite3_file* file = NULL; rc = GetSqlite3File(db_, &file); if (rc != SQLITE_OK) { DLOG(FATAL) << "Failure getting file handle."; return false; } rc = file->pMethods->xTruncate(file, 0); if (rc != SQLITE_OK) { UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabaseTruncate",rc); DLOG(FATAL) << "Failed to truncate file."; return false; } rc = BackupDatabase(null_db.db_, db_, kMain); UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabase2",rc); if (rc != SQLITE_DONE) { DLOG(FATAL) << "Failed retrying Raze()."; } } // The entire database should have been backed up. if (rc != SQLITE_DONE) { // TODO(shess): Figure out which other cases can happen. DLOG(FATAL) << "Unable to copy entire null database."; return false; } return true; } bool Connection::RazeWithTimout(base::TimeDelta timeout) { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; return false; } ScopedBusyTimeout busy_timeout(db_); busy_timeout.SetTimeout(timeout); return Raze(); } bool Connection::RazeAndClose() { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; return false; } // Raze() cannot run in a transaction. RollbackAllTransactions(); bool result = Raze(); CloseInternal(true); // Mark the database so that future API calls fail appropriately, // but don't DCHECK (because after calling this function they are // expected to fail). poisoned_ = true; return result; } void Connection::Poison() { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Cannot poison null db"; return; } RollbackAllTransactions(); CloseInternal(true); // Mark the database so that future API calls fail appropriately, // but don't DCHECK (because after calling this function they are // expected to fail). poisoned_ = true; } // TODO(shess): To the extent possible, figure out the optimal // ordering for these deletes which will prevent other connections // from seeing odd behavior. For instance, it may be necessary to // manually lock the main database file in a SQLite-compatible fashion // (to prevent other processes from opening it), then delete the // journal files, then delete the main database file. Another option // might be to lock the main database file and poison the header with // junk to prevent other processes from opening it successfully (like // Gears "SQLite poison 3" trick). // // static bool Connection::Delete(const base::FilePath& path) { base::ThreadRestrictions::AssertIOAllowed(); base::FilePath journal_path(path.value() + FILE_PATH_LITERAL("-journal")); base::FilePath wal_path(path.value() + FILE_PATH_LITERAL("-wal")); std::string journal_str = AsUTF8ForSQL(journal_path); std::string wal_str = AsUTF8ForSQL(wal_path); std::string path_str = AsUTF8ForSQL(path); // Make sure sqlite3_initialize() is called before anything else. InitializeSqlite(); sqlite3_vfs* vfs = sqlite3_vfs_find(NULL); CHECK(vfs); CHECK(vfs->xDelete); CHECK(vfs->xAccess); // We only work with unix, win32 and mojo filesystems. If you're trying to // use this code with any other VFS, you're not in a good place. CHECK(strncmp(vfs->zName, "unix", 4) == 0 || strncmp(vfs->zName, "win32", 5) == 0 || strcmp(vfs->zName, "mojo") == 0); vfs->xDelete(vfs, journal_str.c_str(), 0); vfs->xDelete(vfs, wal_str.c_str(), 0); vfs->xDelete(vfs, path_str.c_str(), 0); int journal_exists = 0; vfs->xAccess(vfs, journal_str.c_str(), SQLITE_ACCESS_EXISTS, &journal_exists); int wal_exists = 0; vfs->xAccess(vfs, wal_str.c_str(), SQLITE_ACCESS_EXISTS, &wal_exists); int path_exists = 0; vfs->xAccess(vfs, path_str.c_str(), SQLITE_ACCESS_EXISTS, &path_exists); return !journal_exists && !wal_exists && !path_exists; } bool Connection::BeginTransaction() { if (needs_rollback_) { DCHECK_GT(transaction_nesting_, 0); // When we're going to rollback, fail on this begin and don't actually // mark us as entering the nested transaction. return false; } bool success = true; if (!transaction_nesting_) { needs_rollback_ = false; Statement begin(GetCachedStatement(SQL_FROM_HERE, "BEGIN TRANSACTION")); RecordOneEvent(EVENT_BEGIN); if (!begin.Run()) return false; } transaction_nesting_++; return success; } void Connection::RollbackTransaction() { if (!transaction_nesting_) { DLOG_IF(FATAL, !poisoned_) << "Rolling back a nonexistent transaction"; return; } transaction_nesting_--; if (transaction_nesting_ > 0) { // Mark the outermost transaction as needing rollback. needs_rollback_ = true; return; } DoRollback(); } bool Connection::CommitTransaction() { if (!transaction_nesting_) { DLOG_IF(FATAL, !poisoned_) << "Committing a nonexistent transaction"; return false; } transaction_nesting_--; if (transaction_nesting_ > 0) { // Mark any nested transactions as failing after we've already got one. return !needs_rollback_; } if (needs_rollback_) { DoRollback(); return false; } Statement commit(GetCachedStatement(SQL_FROM_HERE, "COMMIT")); // Collect the commit time manually, sql::Statement would register it as query // time only. const base::TimeTicks before = Now(); bool ret = commit.RunWithoutTimers(); const base::TimeDelta delta = Now() - before; RecordCommitTime(delta); RecordOneEvent(EVENT_COMMIT); // Release dirty cache pages after the transaction closes. ReleaseCacheMemoryIfNeeded(false); return ret; } void Connection::RollbackAllTransactions() { if (transaction_nesting_ > 0) { transaction_nesting_ = 0; DoRollback(); } } bool Connection::AttachDatabase(const base::FilePath& other_db_path, const char* attachment_point) { DCHECK(ValidAttachmentPoint(attachment_point)); Statement s(GetUniqueStatement("ATTACH DATABASE ? AS ?")); #if OS_WIN s.BindString16(0, other_db_path.value()); #else s.BindString(0, other_db_path.value()); #endif s.BindString(1, attachment_point); return s.Run(); } bool Connection::DetachDatabase(const char* attachment_point) { DCHECK(ValidAttachmentPoint(attachment_point)); Statement s(GetUniqueStatement("DETACH DATABASE ?")); s.BindString(0, attachment_point); return s.Run(); } // TODO(shess): Consider changing this to execute exactly one statement. If a // caller wishes to execute multiple statements, that should be explicit, and // perhaps tucked into an explicit transaction with rollback in case of error. int Connection::ExecuteAndReturnErrorCode(const char* sql) { AssertIOAllowed(); if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return SQLITE_ERROR; } DCHECK(sql); RecordOneEvent(EVENT_EXECUTE); int rc = SQLITE_OK; while ((rc == SQLITE_OK) && *sql) { sqlite3_stmt *stmt = NULL; const char *leftover_sql; const base::TimeTicks before = Now(); rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, &leftover_sql); sql = leftover_sql; // Stop if an error is encountered. if (rc != SQLITE_OK) break; // This happens if |sql| originally only contained comments or whitespace. // TODO(shess): Audit to see if this can become a DCHECK(). Having // extraneous comments and whitespace in the SQL statements increases // runtime cost and can easily be shifted out to the C++ layer. if (!stmt) continue; // Save for use after statement is finalized. const bool read_only = !!sqlite3_stmt_readonly(stmt); RecordOneEvent(Connection::EVENT_STATEMENT_RUN); while ((rc = sqlite3_step(stmt)) == SQLITE_ROW) { // TODO(shess): Audit to see if this can become a DCHECK. I think PRAGMA // is the only legitimate case for this. RecordOneEvent(Connection::EVENT_STATEMENT_ROWS); } // sqlite3_finalize() returns SQLITE_OK if the most recent sqlite3_step() // returned SQLITE_DONE or SQLITE_ROW, otherwise the error code. rc = sqlite3_finalize(stmt); if (rc == SQLITE_OK) RecordOneEvent(Connection::EVENT_STATEMENT_SUCCESS); // sqlite3_exec() does this, presumably to avoid spinning the parser for // trailing whitespace. // TODO(shess): Audit to see if this can become a DCHECK. while (base::IsAsciiWhitespace(*sql)) { sql++; } const base::TimeDelta delta = Now() - before; RecordTimeAndChanges(delta, read_only); } // Most calls to Execute() modify the database. The main exceptions would be // calls such as CREATE TABLE IF NOT EXISTS which could modify the database // but sometimes don't. ReleaseCacheMemoryIfNeeded(true); return rc; } bool Connection::Execute(const char* sql) { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return false; } int error = ExecuteAndReturnErrorCode(sql); if (error != SQLITE_OK) error = OnSqliteError(error, NULL, sql); // This needs to be a FATAL log because the error case of arriving here is // that there's a malformed SQL statement. This can arise in development if // a change alters the schema but not all queries adjust. This can happen // in production if the schema is corrupted. if (error == SQLITE_ERROR) DLOG(FATAL) << "SQL Error in " << sql << ", " << GetErrorMessage(); return error == SQLITE_OK; } bool Connection::ExecuteWithTimeout(const char* sql, base::TimeDelta timeout) { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return false; } ScopedBusyTimeout busy_timeout(db_); busy_timeout.SetTimeout(timeout); return Execute(sql); } bool Connection::HasCachedStatement(const StatementID& id) const { return statement_cache_.find(id) != statement_cache_.end(); } scoped_refptr Connection::GetCachedStatement( const StatementID& id, const char* sql) { CachedStatementMap::iterator i = statement_cache_.find(id); if (i != statement_cache_.end()) { // Statement is in the cache. It should still be active (we're the only // one invalidating cached statements, and we'll remove it from the cache // if we do that. Make sure we reset it before giving out the cached one in // case it still has some stuff bound. DCHECK(i->second->is_valid()); sqlite3_reset(i->second->stmt()); return i->second; } scoped_refptr statement = GetUniqueStatement(sql); if (statement->is_valid()) statement_cache_[id] = statement; // Only cache valid statements. return statement; } scoped_refptr Connection::GetUniqueStatement( const char* sql) { AssertIOAllowed(); // Return inactive statement. if (!db_) return new StatementRef(NULL, NULL, poisoned_); sqlite3_stmt* stmt = NULL; int rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL); if (rc != SQLITE_OK) { // This is evidence of a syntax error in the incoming SQL. if (!ShouldIgnoreSqliteCompileError(rc)) DLOG(FATAL) << "SQL compile error " << GetErrorMessage(); // It could also be database corruption. OnSqliteError(rc, NULL, sql); return new StatementRef(NULL, NULL, false); } return new StatementRef(this, stmt, true); } // TODO(shess): Unify this with GetUniqueStatement(). The only difference that // seems legitimate is not passing |this| to StatementRef. scoped_refptr Connection::GetUntrackedStatement( const char* sql) const { // Return inactive statement. if (!db_) return new StatementRef(NULL, NULL, poisoned_); sqlite3_stmt* stmt = NULL; int rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL); if (rc != SQLITE_OK) { // This is evidence of a syntax error in the incoming SQL. if (!ShouldIgnoreSqliteCompileError(rc)) DLOG(FATAL) << "SQL compile error " << GetErrorMessage(); return new StatementRef(NULL, NULL, false); } return new StatementRef(NULL, stmt, true); } std::string Connection::GetSchema() const { // The ORDER BY should not be necessary, but relying on organic // order for something like this is questionable. const char* kSql = "SELECT type, name, tbl_name, sql " "FROM sqlite_master ORDER BY 1, 2, 3, 4"; Statement statement(GetUntrackedStatement(kSql)); std::string schema; while (statement.Step()) { schema += statement.ColumnString(0); schema += '|'; schema += statement.ColumnString(1); schema += '|'; schema += statement.ColumnString(2); schema += '|'; schema += statement.ColumnString(3); schema += '\n'; } return schema; } bool Connection::IsSQLValid(const char* sql) { AssertIOAllowed(); if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return false; } sqlite3_stmt* stmt = NULL; if (sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL) != SQLITE_OK) return false; sqlite3_finalize(stmt); return true; } bool Connection::DoesTableExist(const char* table_name) const { return DoesTableOrIndexExist(table_name, "table"); } bool Connection::DoesIndexExist(const char* index_name) const { return DoesTableOrIndexExist(index_name, "index"); } bool Connection::DoesTableOrIndexExist( const char* name, const char* type) const { const char* kSql = "SELECT name FROM sqlite_master WHERE type=? AND name=? COLLATE NOCASE"; Statement statement(GetUntrackedStatement(kSql)); // This can happen if the database is corrupt and the error is being ignored // for testing purposes. if (!statement.is_valid()) return false; statement.BindString(0, type); statement.BindString(1, name); return statement.Step(); // Table exists if any row was returned. } bool Connection::DoesColumnExist(const char* table_name, const char* column_name) const { std::string sql("PRAGMA TABLE_INFO("); sql.append(table_name); sql.append(")"); Statement statement(GetUntrackedStatement(sql.c_str())); // This can happen if the database is corrupt and the error is being ignored // for testing purposes. if (!statement.is_valid()) return false; while (statement.Step()) { if (base::EqualsCaseInsensitiveASCII(statement.ColumnString(1), column_name)) return true; } return false; } int64_t Connection::GetLastInsertRowId() const { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return 0; } return sqlite3_last_insert_rowid(db_); } int Connection::GetLastChangeCount() const { if (!db_) { DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; return 0; } return sqlite3_changes(db_); } int Connection::GetErrorCode() const { if (!db_) return SQLITE_ERROR; return sqlite3_errcode(db_); } int Connection::GetLastErrno() const { if (!db_) return -1; int err = 0; if (SQLITE_OK != sqlite3_file_control(db_, NULL, SQLITE_LAST_ERRNO, &err)) return -2; return err; } const char* Connection::GetErrorMessage() const { if (!db_) return "sql::Connection has no connection."; return sqlite3_errmsg(db_); } bool Connection::OpenInternal(const std::string& file_name, Connection::Retry retry_flag) { AssertIOAllowed(); if (db_) { DLOG(FATAL) << "sql::Connection is already open."; return false; } // Make sure sqlite3_initialize() is called before anything else. InitializeSqlite(); // Setup the stats histograms immediately rather than allocating lazily. // Connections which won't exercise all of these probably shouldn't exist. if (!histogram_tag_.empty()) { stats_histogram_ = base::LinearHistogram::FactoryGet( "Sqlite.Stats." + histogram_tag_, 1, EVENT_MAX_VALUE, EVENT_MAX_VALUE + 1, base::HistogramBase::kUmaTargetedHistogramFlag); // The timer setup matches UMA_HISTOGRAM_MEDIUM_TIMES(). 3 minutes is an // unreasonable time for any single operation, so there is not much value to // knowing if it was 3 minutes or 5 minutes. In reality at that point // things are entirely busted. commit_time_histogram_ = GetMediumTimeHistogram("Sqlite.CommitTime." + histogram_tag_); autocommit_time_histogram_ = GetMediumTimeHistogram("Sqlite.AutoCommitTime." + histogram_tag_); update_time_histogram_ = GetMediumTimeHistogram("Sqlite.UpdateTime." + histogram_tag_); query_time_histogram_ = GetMediumTimeHistogram("Sqlite.QueryTime." + histogram_tag_); } // If |poisoned_| is set, it means an error handler called // RazeAndClose(). Until regular Close() is called, the caller // should be treating the database as open, but is_open() currently // only considers the sqlite3 handle's state. // TODO(shess): Revise is_open() to consider poisoned_, and review // to see if any non-testing code even depends on it. DLOG_IF(FATAL, poisoned_) << "sql::Connection is already open."; poisoned_ = false; int err = sqlite3_open(file_name.c_str(), &db_); if (err != SQLITE_OK) { // Extended error codes cannot be enabled until a handle is // available, fetch manually. err = sqlite3_extended_errcode(db_); // Histogram failures specific to initial open for debugging // purposes. UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.OpenFailure", err); OnSqliteError(err, NULL, "-- sqlite3_open()"); bool was_poisoned = poisoned_; Close(); if (was_poisoned && retry_flag == RETRY_ON_POISON) return OpenInternal(file_name, NO_RETRY); return false; } // TODO(shess): OS_WIN support? #if defined(OS_POSIX) if (restrict_to_user_) { DCHECK_NE(file_name, std::string(":memory")); base::FilePath file_path(file_name); int mode = 0; // TODO(shess): Arguably, failure to retrieve and change // permissions should be fatal if the file exists. if (base::GetPosixFilePermissions(file_path, &mode)) { mode &= base::FILE_PERMISSION_USER_MASK; base::SetPosixFilePermissions(file_path, mode); // SQLite sets the permissions on these files from the main // database on create. Set them here in case they already exist // at this point. Failure to set these permissions should not // be fatal unless the file doesn't exist. base::FilePath journal_path(file_name + FILE_PATH_LITERAL("-journal")); base::FilePath wal_path(file_name + FILE_PATH_LITERAL("-wal")); base::SetPosixFilePermissions(journal_path, mode); base::SetPosixFilePermissions(wal_path, mode); } } #endif // defined(OS_POSIX) // SQLite uses a lookaside buffer to improve performance of small mallocs. // Chromium already depends on small mallocs being efficient, so we disable // this to avoid the extra memory overhead. // This must be called immediatly after opening the database before any SQL // statements are run. sqlite3_db_config(db_, SQLITE_DBCONFIG_LOOKASIDE, NULL, 0, 0); // Enable extended result codes to provide more color on I/O errors. // Not having extended result codes is not a fatal problem, as // Chromium code does not attempt to handle I/O errors anyhow. The // current implementation always returns SQLITE_OK, the DCHECK is to // quickly notify someone if SQLite changes. err = sqlite3_extended_result_codes(db_, 1); DCHECK_EQ(err, SQLITE_OK) << "Could not enable extended result codes"; // sqlite3_open() does not actually read the database file (unless a // hot journal is found). Successfully executing this pragma on an // existing database requires a valid header on page 1. // TODO(shess): For now, just probing to see what the lay of the // land is. If it's mostly SQLITE_NOTADB, then the database should // be razed. err = ExecuteAndReturnErrorCode("PRAGMA auto_vacuum"); if (err != SQLITE_OK) UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.OpenProbeFailure", err); #if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE) // The version of SQLite shipped with iOS doesn't enable ICU, which includes // REGEXP support. Add it in dynamically. err = sqlite3IcuInit(db_); DCHECK_EQ(err, SQLITE_OK) << "Could not enable ICU support"; #endif // OS_IOS && USE_SYSTEM_SQLITE // If indicated, lock up the database before doing anything else, so // that the following code doesn't have to deal with locking. // TODO(shess): This code is brittle. Find the cases where code // doesn't request |exclusive_locking_| and audit that it does the // right thing with SQLITE_BUSY, and that it doesn't make // assumptions about who might change things in the database. // http://crbug.com/56559 if (exclusive_locking_) { // TODO(shess): This should probably be a failure. Code which // requests exclusive locking but doesn't get it is almost certain // to be ill-tested. ignore_result(Execute("PRAGMA locking_mode=EXCLUSIVE")); } // http://www.sqlite.org/pragma.html#pragma_journal_mode // DELETE (default) - delete -journal file to commit. // TRUNCATE - truncate -journal file to commit. // PERSIST - zero out header of -journal file to commit. // TRUNCATE should be faster than DELETE because it won't need directory // changes for each transaction. PERSIST may break the spirit of using // secure_delete. ignore_result(Execute("PRAGMA journal_mode = TRUNCATE")); const base::TimeDelta kBusyTimeout = base::TimeDelta::FromSeconds(kBusyTimeoutSeconds); if (page_size_ != 0) { // Enforce SQLite restrictions on |page_size_|. DCHECK(!(page_size_ & (page_size_ - 1))) << " page_size_ " << page_size_ << " is not a power of two."; const int kSqliteMaxPageSize = 32768; // from sqliteLimit.h DCHECK_LE(page_size_, kSqliteMaxPageSize); const std::string sql = base::StringPrintf("PRAGMA page_size=%d", page_size_); ignore_result(ExecuteWithTimeout(sql.c_str(), kBusyTimeout)); } if (cache_size_ != 0) { const std::string sql = base::StringPrintf("PRAGMA cache_size=%d", cache_size_); ignore_result(ExecuteWithTimeout(sql.c_str(), kBusyTimeout)); } if (!ExecuteWithTimeout("PRAGMA secure_delete=ON", kBusyTimeout)) { bool was_poisoned = poisoned_; Close(); if (was_poisoned && retry_flag == RETRY_ON_POISON) return OpenInternal(file_name, NO_RETRY); return false; } // Set a reasonable chunk size for larger files. This reduces churn from // remapping memory on size changes. It also reduces filesystem // fragmentation. // TODO(shess): It may make sense to have this be hinted by the client. // Database sizes seem to be bimodal, some clients have consistently small // databases (<20k) while other clients have a broad distribution of sizes // (hundreds of kilobytes to many megabytes). sqlite3_file* file = NULL; sqlite3_int64 db_size = 0; int rc = GetSqlite3FileAndSize(db_, &file, &db_size); if (rc == SQLITE_OK && db_size > 16 * 1024) { int chunk_size = 4 * 1024; if (db_size > 128 * 1024) chunk_size = 32 * 1024; sqlite3_file_control(db_, NULL, SQLITE_FCNTL_CHUNK_SIZE, &chunk_size); } // Enable memory-mapped access. The explicit-disable case is because SQLite // can be built to default-enable mmap. GetAppropriateMmapSize() calculates a // safe range to memory-map based on past regular I/O. This value will be // capped by SQLITE_MAX_MMAP_SIZE, which could be different between 32-bit and // 64-bit platforms. size_t mmap_size = mmap_disabled_ ? 0 : GetAppropriateMmapSize(); std::string mmap_sql = base::StringPrintf("PRAGMA mmap_size = %" PRIuS, mmap_size); ignore_result(Execute(mmap_sql.c_str())); // Determine if memory-mapping has actually been enabled. The Execute() above // can succeed without changing the amount mapped. mmap_enabled_ = false; { Statement s(GetUniqueStatement("PRAGMA mmap_size")); if (s.Step() && s.ColumnInt64(0) > 0) mmap_enabled_ = true; } DCHECK(!memory_dump_provider_); memory_dump_provider_.reset( new ConnectionMemoryDumpProvider(db_, histogram_tag_)); base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider( memory_dump_provider_.get(), "sql::Connection", nullptr); return true; } void Connection::DoRollback() { Statement rollback(GetCachedStatement(SQL_FROM_HERE, "ROLLBACK")); // Collect the rollback time manually, sql::Statement would register it as // query time only. const base::TimeTicks before = Now(); rollback.RunWithoutTimers(); const base::TimeDelta delta = Now() - before; RecordUpdateTime(delta); RecordOneEvent(EVENT_ROLLBACK); // The cache may have been accumulating dirty pages for commit. Note that in // some cases sql::Transaction can fire rollback after a database is closed. if (is_open()) ReleaseCacheMemoryIfNeeded(false); needs_rollback_ = false; } void Connection::StatementRefCreated(StatementRef* ref) { DCHECK(open_statements_.find(ref) == open_statements_.end()); open_statements_.insert(ref); } void Connection::StatementRefDeleted(StatementRef* ref) { StatementRefSet::iterator i = open_statements_.find(ref); if (i == open_statements_.end()) DLOG(FATAL) << "Could not find statement"; else open_statements_.erase(i); } void Connection::set_histogram_tag(const std::string& tag) { DCHECK(!is_open()); histogram_tag_ = tag; } void Connection::AddTaggedHistogram(const std::string& name, size_t sample) const { if (histogram_tag_.empty()) return; // TODO(shess): The histogram macros create a bit of static storage // for caching the histogram object. This code shouldn't execute // often enough for such caching to be crucial. If it becomes an // issue, the object could be cached alongside histogram_prefix_. std::string full_histogram_name = name + "." + histogram_tag_; base::HistogramBase* histogram = base::SparseHistogram::FactoryGet( full_histogram_name, base::HistogramBase::kUmaTargetedHistogramFlag); if (histogram) histogram->Add(sample); } int Connection::OnSqliteError(int err, sql::Statement *stmt, const char* sql) { UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.Error", err); AddTaggedHistogram("Sqlite.Error", err); // Always log the error. if (!sql && stmt) sql = stmt->GetSQLStatement(); if (!sql) sql = "-- unknown"; std::string id = histogram_tag_; if (id.empty()) id = DbPath().BaseName().AsUTF8Unsafe(); LOG(ERROR) << id << " sqlite error " << err << ", errno " << GetLastErrno() << ": " << GetErrorMessage() << ", sql: " << sql; if (!error_callback_.is_null()) { // Fire from a copy of the callback in case of reentry into // re/set_error_callback(). // TODO(shess): ErrorCallback(error_callback_).Run(err, stmt); return err; } // The default handling is to assert on debug and to ignore on release. if (!ShouldIgnoreSqliteError(err)) DLOG(FATAL) << GetErrorMessage(); return err; } bool Connection::FullIntegrityCheck(std::vector* messages) { return IntegrityCheckHelper("PRAGMA integrity_check", messages); } bool Connection::QuickIntegrityCheck() { std::vector messages; if (!IntegrityCheckHelper("PRAGMA quick_check", &messages)) return false; return messages.size() == 1 && messages[0] == "ok"; } // TODO(shess): Allow specifying maximum results (default 100 lines). bool Connection::IntegrityCheckHelper( const char* pragma_sql, std::vector* messages) { messages->clear(); // This has the side effect of setting SQLITE_RecoveryMode, which // allows SQLite to process through certain cases of corruption. // Failing to set this pragma probably means that the database is // beyond recovery. const char kWritableSchema[] = "PRAGMA writable_schema = ON"; if (!Execute(kWritableSchema)) return false; bool ret = false; { sql::Statement stmt(GetUniqueStatement(pragma_sql)); // The pragma appears to return all results (up to 100 by default) // as a single string. This doesn't appear to be an API contract, // it could return separate lines, so loop _and_ split. while (stmt.Step()) { std::string result(stmt.ColumnString(0)); *messages = base::SplitString(result, "\n", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); } ret = stmt.Succeeded(); } // Best effort to put things back as they were before. const char kNoWritableSchema[] = "PRAGMA writable_schema = OFF"; ignore_result(Execute(kNoWritableSchema)); return ret; } base::TimeTicks TimeSource::Now() { return base::TimeTicks::Now(); } } // namespace sql