#!/usr/bin/python # Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import string HEADER = """\ // Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file automatically generated by testing/generate_gmock_mutant.py. // DO NOT EDIT. #ifndef TESTING_GMOCK_MUTANT_H_ #define TESTING_GMOCK_MUTANT_H_ // The intention of this file is to make possible using GMock actions in // all of its syntactic beauty. Classes and helper functions can be used as // more generic variants of Task and Callback classes (see base/task.h) // Mutant supports both pre-bound arguments (like Task) and call-time // arguments (like Callback) - hence the name. :-) // // DispatchToMethod/Function supports two sets of arguments: pre-bound (P) and // call-time (C). The arguments as well as the return type are templatized. // DispatchToMethod/Function will also try to call the selected method or // function even if provided pre-bound arguments does not match exactly with // the function signature hence the X1, X2 ... XN parameters in CreateFunctor. // DispatchToMethod will try to invoke method that may not belong to the // object's class itself but to the object's class base class. // // Additionally you can bind the object at calltime by binding a pointer to // pointer to the object at creation time - before including this file you // have to #define GMOCK_MUTANT_INCLUDE_LATE_OBJECT_BINDING. // // TODO(stoyan): It's yet not clear to me should we use T& and T&* instead // of T* and T** when we invoke CreateFunctor to match the EXPECT_CALL style. // // // Sample usage with gMock: // // struct Mock : public ObjectDelegate { // MOCK_METHOD2(string, OnRequest(int n, const string& request)); // MOCK_METHOD1(void, OnQuit(int exit_code)); // MOCK_METHOD2(void, LogMessage(int level, const string& message)); // // string HandleFlowers(const string& reply, int n, const string& request) { // string result = SStringPrintf("In request of %d %s ", n, request); // for (int i = 0; i < n; ++i) result.append(reply) // return result; // } // // void DoLogMessage(int level, const string& message) { // } // // void QuitMessageLoop(int seconds) { // MessageLoop* loop = MessageLoop::current(); // loop->PostDelayedTask(FROM_HERE, new MessageLoop::QuitTask, // 1000 * seconds); // } // }; // // Mock mock; // // Will invoke mock.HandleFlowers("orchids", n, request) // // "orchids" is a pre-bound argument, and and are call-time // // arguments - they are not known until the OnRequest mock is invoked. // EXPECT_CALL(mock, OnRequest(Ge(5), StartsWith("flower")) // .Times(1) // .WillOnce(Invoke(CreateFunctor(&mock, &Mock::HandleFlowers, // string("orchids")))); // // // // No pre-bound arguments, two call-time arguments passed // // directly to DoLogMessage // EXPECT_CALL(mock, OnLogMessage(_, _)) // .Times(AnyNumber()) // .WillAlways(Invoke(CreateFunctor, &mock, &Mock::DoLogMessage)); // // // // In this case we have a single pre-bound argument - 3. We ignore // // all of the arguments of OnQuit. // EXCEPT_CALL(mock, OnQuit(_)) // .Times(1) // .WillOnce(InvokeWithoutArgs(CreateFunctor( // &mock, &Mock::QuitMessageLoop, 3))); // // MessageLoop loop; // loop.Run(); // // // // Here is another example of how we can set an action that invokes // // method of an object that is not yet created. // struct Mock : public ObjectDelegate { // MOCK_METHOD1(void, DemiurgeCreated(Demiurge*)); // MOCK_METHOD2(void, OnRequest(int count, const string&)); // // void StoreDemiurge(Demiurge* w) { // demiurge_ = w; // } // // Demiurge* demiurge; // } // // EXPECT_CALL(mock, DemiurgeCreated(_)).Times(1) // .WillOnce(Invoke(CreateFunctor(&mock, &Mock::StoreDemiurge))); // // EXPECT_CALL(mock, OnRequest(_, StrEq("Moby Dick"))) // .Times(AnyNumber()) // .WillAlways(WithArgs<0>(Invoke( // CreateFunctor(&mock->demiurge_, &Demiurge::DecreaseMonsters)))); // #include "base/linked_ptr.h" #include "base/tuple.h" // for Tuple namespace testing {""" MUTANT = """\ // Interface that is exposed to the consumer, that does the actual calling // of the method. template class MutantRunner { public: virtual R RunWithParams(const Params& params) = 0; virtual ~MutantRunner() {} }; // Mutant holds pre-bound arguments (like Task). Like Callback // allows call-time arguments. You bind a pointer to the object // at creation time. template class Mutant : public MutantRunner { public: Mutant(T* obj, Method method, const PreBound& pb) : obj_(obj), method_(method), pb_(pb) { } // MutantRunner implementation virtual R RunWithParams(const Params& params) { return DispatchToMethod(this->obj_, this->method_, pb_, params); } T* obj_; Method method_; PreBound pb_; }; template class MutantFunction : public MutantRunner { public: MutantFunction(Function function, const PreBound& pb) : function_(function), pb_(pb) { } // MutantRunner implementation virtual R RunWithParams(const Params& params) { return DispatchToFunction(function_, pb_, params); } Function function_; PreBound pb_; }; #ifdef GMOCK_MUTANT_INCLUDE_LATE_OBJECT_BINDING // MutantLateBind is like Mutant, but you bind a pointer to a pointer // to the object. This way you can create actions for an object // that is not yet created (has only storage for a pointer to it). template class MutantLateObjectBind : public MutantRunner { public: MutantLateObjectBind(T** obj, Method method, const PreBound& pb) : obj_(obj), method_(method), pb_(pb) { } // MutantRunner implementation. virtual R RunWithParams(const Params& params) { EXPECT_THAT(*this->obj_, testing::NotNull()); if (NULL == *this->obj_) return R(); return DispatchToMethod( *this->obj_, this->method_, pb_, params); } T** obj_; Method method_; PreBound pb_; }; #endif // Simple MutantRunner<> wrapper acting as a functor. // Redirects operator() to MutantRunner::Run() template struct MutantFunctor { explicit MutantFunctor(MutantRunner* cb) : impl_(cb) { } ~MutantFunctor() { } inline R operator()() { return impl_->RunWithParams(Tuple0()); } template inline R operator()(const Arg1& a) { return impl_->RunWithParams(Params(a)); } template inline R operator()(const Arg1& a, const Arg2& b) { return impl_->RunWithParams(Params(a, b)); } template inline R operator()(const Arg1& a, const Arg2& b, const Arg3& c) { return impl_->RunWithParams(Params(a, b, c)); } template inline R operator()(const Arg1& a, const Arg2& b, const Arg3& c, const Arg4& d) { return impl_->RunWithParams(Params(a, b, c, d)); } private: // We need copy constructor since MutantFunctor is copied few times // inside GMock machinery, hence no DISALLOW_EVIL_CONTRUCTORS MutantFunctor(); linked_ptr > impl_; }; """ FOOTER = """\ } // namespace testing #endif // TESTING_GMOCK_MUTANT_H_""" # Templates for DispatchToMethod/DispatchToFunction functions. # template_params - typename P1, typename P2.. typename C1.. # prebound - TupleN # calltime - TupleN # args - p.a, p.b.., c.a, c.b.. DISPATCH_TO_METHOD_TEMPLATE = """\ template inline R DispatchToMethod(T* obj, Method method, const %(prebound)s& p, const %(calltime)s& c) { return (obj->*method)(%(args)s); } """ DISPATCH_TO_FUNCTION_TEMPLATE = """\ template inline R DispatchToFunction(Function function, const %(prebound)s& p, const %(calltime)s& c) { return (*function)(%(args)s); } """ # Templates for CreateFunctor functions. # template_params - typename P1, typename P2.. typename C1.. typename X1.. # prebound - TupleN # calltime - TupleN # params - X1,.. , A1, .. # args - const P1& p1 .. # call_args - p1, p2, p3.. CREATE_METHOD_FUNCTOR_TEMPLATE = """\ template inline MutantFunctor CreateFunctor(T* obj, R (U::*method)(%(params)s), %(args)s) { MutantRunner* t = new Mutant (obj, method, MakeTuple(%(call_args)s)); return MutantFunctor(t); } """ CREATE_FUNCTION_FUNCTOR_TEMPLATE = """\ template inline MutantFunctor CreateFunctor(R (*function)(%(params)s), %(args)s) { MutantRunner* t = new MutantFunction (function, MakeTuple(%(call_args)s)); return MutantFunctor(t); } """ def SplitLine(line, width): """Splits a single line at comma, at most |width| characters long.""" if len(line) < width: return (line, None) n = 1 + line[:width].rfind(",") if n == 0: # If comma cannot be found give up and return the entire line. return (line, None) # Assume there is a space after the comma assert line[n] == " " return (line[:n], line[n + 1:]) def Wrap(s, width, subsequent_offset=4): """Wraps a single line |s| at commas so every line is at most |width| characters long. """ w = [] spaces = " " * subsequent_offset while s: (f, s) = SplitLine(s, width) w.append(f) if s: s = spaces + s return "\n".join(w) def Clean(s): """Cleans artifacts from generated C++ code. Our simple string formatting/concatenation may introduce extra commas. """ s = s.replace("<>", "") s = s.replace(", >", ">") s = s.replace(", )", ")") s = s.replace(">>", "> >") return s def ExpandPattern(pattern, it): """Return list of expanded pattern strings. Each string is created by replacing all '%' in |pattern| with element of |it|. """ return [pattern.replace("%", x) for x in it] def Gen(pattern, n): """Expands pattern replacing '%' with sequential integers. Expanded patterns will be joined with comma separator. GenAlphs("X%", 3) will return "X1, X2, X3". """ it = string.hexdigits[1:n + 1] return ", ".join(ExpandPattern(pattern, it)) def GenAlpha(pattern, n): """Expands pattern replacing '%' with sequential small ASCII letters. Expanded patterns will be joined with comma separator. GenAlphs("X%", 3) will return "Xa, Xb, Xc". """ it = string.ascii_lowercase[0:n] return ", ".join(ExpandPattern(pattern, it)) def Merge(a): return ", ".join(filter(len, a)) def GenTuple(pattern, n): return Clean("Tuple%d<%s>" % (n, Gen(pattern, n))) def FixCode(s): lines = Clean(s).splitlines() # Wrap sometimes very long 1st and 3rd line at 80th column. lines[0] = Wrap(lines[0], 80, 10) lines[2] = Wrap(lines[2], 80, 4) return "\n".join(lines) def GenerateDispatch(prebound, calltime): print "\n// %d - %d" % (prebound, calltime) args = { "template_params": Merge([Gen("typename P%", prebound), Gen("typename C%", calltime)]), "prebound": GenTuple("P%", prebound), "calltime": GenTuple("C%", calltime), "args": Merge([GenAlpha("p.%", prebound), GenAlpha("c.%", calltime)]), } print FixCode(DISPATCH_TO_METHOD_TEMPLATE % args) print FixCode(DISPATCH_TO_FUNCTION_TEMPLATE % args) def GenerateCreateFunctor(prebound, calltime): print "// %d - %d" % (prebound, calltime) args = { "calltime": GenTuple("A%", calltime), "prebound": GenTuple("P%", prebound), "params": Merge([Gen("X%", prebound), Gen("A%", calltime)]), "args": Gen("const P%& p%", prebound), "call_args": Gen("p%", prebound), "template_params": Merge([Gen("typename P%", prebound), Gen("typename A%", calltime), Gen("typename X%", prebound)]) } mutant = FixCode(CREATE_METHOD_FUNCTOR_TEMPLATE % args) print mutant # Slightly different version for free function call. print "\n", FixCode(CREATE_FUNCTION_FUNCTOR_TEMPLATE % args) # Functor with pointer to a pointer of the object. print "\n#ifdef GMOCK_MUTANT_INCLUDE_LATE_OBJECT_BINDING" mutant2 = mutant.replace("CreateFunctor(T* obj,", "CreateFunctor(T** obj,") mutant2 = mutant2.replace("new Mutant", "new MutantLateObjectBind") mutant2 = mutant2.replace(" " * 17 + "Tuple", " " * 31 + "Tuple") print mutant2 print "#endif // GMOCK_MUTANT_INCLUDE_LATE_OBJECT_BINDING\n" # Functor for method with __stdcall calling conventions. print "#if defined (OS_WIN)" stdcall = CREATE_METHOD_FUNCTOR_TEMPLATE.replace("U::", "__stdcall U::") print FixCode(stdcall % args) print "#endif // OS_WIN\n" def main(): print HEADER for prebound in xrange(0, 4 + 1): for args in xrange(0, 4 + 1): GenerateDispatch(prebound, args) print MUTANT for prebound in xrange(0, 4 + 1): for args in xrange(0, 4 + 1): GenerateCreateFunctor(prebound, args) print FOOTER if __name__ == "__main__": main()