/* * Copyright (C) 2011, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "modules/webaudio/WaveShaperDSPKernel.h" #include "wtf/MainThread.h" #include "wtf/Threading.h" #include const unsigned RenderingQuantum = 128; namespace blink { WaveShaperDSPKernel::WaveShaperDSPKernel(WaveShaperProcessor* processor) : AudioDSPKernel(processor) { if (processor->oversample() != WaveShaperProcessor::OverSampleNone) lazyInitializeOversampling(); } void WaveShaperDSPKernel::lazyInitializeOversampling() { if (!m_tempBuffer) { m_tempBuffer = adoptPtr(new AudioFloatArray(RenderingQuantum * 2)); m_tempBuffer2 = adoptPtr(new AudioFloatArray(RenderingQuantum * 4)); m_upSampler = adoptPtr(new UpSampler(RenderingQuantum)); m_downSampler = adoptPtr(new DownSampler(RenderingQuantum * 2)); m_upSampler2 = adoptPtr(new UpSampler(RenderingQuantum * 2)); m_downSampler2 = adoptPtr(new DownSampler(RenderingQuantum * 4)); } } void WaveShaperDSPKernel::process(const float* source, float* destination, size_t framesToProcess) { switch (waveShaperProcessor()->oversample()) { case WaveShaperProcessor::OverSampleNone: processCurve(source, destination, framesToProcess); break; case WaveShaperProcessor::OverSample2x: processCurve2x(source, destination, framesToProcess); break; case WaveShaperProcessor::OverSample4x: processCurve4x(source, destination, framesToProcess); break; default: ASSERT_NOT_REACHED(); } } void WaveShaperDSPKernel::processCurve(const float* source, float* destination, size_t framesToProcess) { ASSERT(source); ASSERT(destination); ASSERT(waveShaperProcessor()); DOMFloat32Array* curve = waveShaperProcessor()->curve(); if (!curve) { // Act as "straight wire" pass-through if no curve is set. memcpy(destination, source, sizeof(float) * framesToProcess); return; } float* curveData = curve->data(); int curveLength = curve->length(); ASSERT(curveData); if (!curveData || !curveLength) { memcpy(destination, source, sizeof(float) * framesToProcess); return; } // Apply waveshaping curve. for (unsigned i = 0; i < framesToProcess; ++i) { const float input = source[i]; // Calculate a virtual index based on input -1 -> +1 with -1 being curve[0], +1 being // curve[curveLength - 1], and 0 being at the center of the curve data. Then linearly // interpolate between the two points in the curve. double virtualIndex = 0.5 * (input + 1) * (curveLength - 1); double output; if (virtualIndex < 0) { // input < -1, so use curve[0] output = curveData[0]; } else if (virtualIndex >= curveLength - 1) { // input >= 1, so use last curve value output = curveData[curveLength - 1]; } else { // The general case where -1 <= input < 1, where 0 <= virtualIndex < curveLength - 1, // so interpolate between the nearest samples on the curve. unsigned index1 = static_cast(virtualIndex); unsigned index2 = index1 + 1; double interpolationFactor = virtualIndex - index1; double value1 = curveData[index1]; double value2 = curveData[index2]; output = (1.0 - interpolationFactor) * value1 + interpolationFactor * value2; } destination[i] = output; } } void WaveShaperDSPKernel::processCurve2x(const float* source, float* destination, size_t framesToProcess) { bool isSafe = framesToProcess == RenderingQuantum; ASSERT(isSafe); if (!isSafe) return; float* tempP = m_tempBuffer->data(); m_upSampler->process(source, tempP, framesToProcess); // Process at 2x up-sampled rate. processCurve(tempP, tempP, framesToProcess * 2); m_downSampler->process(tempP, destination, framesToProcess * 2); } void WaveShaperDSPKernel::processCurve4x(const float* source, float* destination, size_t framesToProcess) { bool isSafe = framesToProcess == RenderingQuantum; ASSERT(isSafe); if (!isSafe) return; float* tempP = m_tempBuffer->data(); float* tempP2 = m_tempBuffer2->data(); m_upSampler->process(source, tempP, framesToProcess); m_upSampler2->process(tempP, tempP2, framesToProcess * 2); // Process at 4x up-sampled rate. processCurve(tempP2, tempP2, framesToProcess * 4); m_downSampler2->process(tempP2, tempP, framesToProcess * 4); m_downSampler->process(tempP, destination, framesToProcess * 2); } void WaveShaperDSPKernel::reset() { if (m_upSampler) { m_upSampler->reset(); m_downSampler->reset(); m_upSampler2->reset(); m_downSampler2->reset(); } } double WaveShaperDSPKernel::latencyTime() const { size_t latencyFrames = 0; WaveShaperDSPKernel* kernel = const_cast(this); switch (kernel->waveShaperProcessor()->oversample()) { case WaveShaperProcessor::OverSampleNone: break; case WaveShaperProcessor::OverSample2x: latencyFrames += m_upSampler->latencyFrames(); latencyFrames += m_downSampler->latencyFrames(); break; case WaveShaperProcessor::OverSample4x: { // Account for first stage upsampling. latencyFrames += m_upSampler->latencyFrames(); latencyFrames += m_downSampler->latencyFrames(); // Account for second stage upsampling. // and divide by 2 to get back down to the regular sample-rate. size_t latencyFrames2 = (m_upSampler2->latencyFrames() + m_downSampler2->latencyFrames()) / 2; latencyFrames += latencyFrames2; break; } default: ASSERT_NOT_REACHED(); } return static_cast(latencyFrames) / sampleRate(); } } // namespace blink