/* * Copyright (C) 2012 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "platform/graphics/ImageFrameGenerator.h" #include "SkData.h" #include "platform/SharedBuffer.h" #include "platform/TraceEvent.h" #include "platform/graphics/ImageDecodingStore.h" #include "platform/image-decoders/ImageDecoder.h" namespace blink { static bool compatibleInfo(const SkImageInfo& src, const SkImageInfo& dst) { if (src == dst) return true; // It is legal to write kOpaque_SkAlphaType pixels into a kPremul_SkAlphaType buffer. // This can happen when DeferredImageDecoder allocates an kOpaque_SkAlphaType image // generator based on cached frame info, while the ImageFrame-allocated dest bitmap // stays kPremul_SkAlphaType. if (src.alphaType() == kOpaque_SkAlphaType && dst.alphaType() == kPremul_SkAlphaType) { const SkImageInfo& tmp = src.makeAlphaType(kPremul_SkAlphaType); return tmp == dst; } return false; } // Creates a SkPixelRef such that the memory for pixels is given by an external body. // This is used to write directly to the memory given by Skia during decoding. class ImageFrameGenerator::ExternalMemoryAllocator final : public SkBitmap::Allocator { USING_FAST_MALLOC(ExternalMemoryAllocator); WTF_MAKE_NONCOPYABLE(ExternalMemoryAllocator); public: ExternalMemoryAllocator(const SkImageInfo& info, void* pixels, size_t rowBytes) : m_info(info) , m_pixels(pixels) , m_rowBytes(rowBytes) { } bool allocPixelRef(SkBitmap* dst, SkColorTable* ctable) override { const SkImageInfo& info = dst->info(); if (kUnknown_SkColorType == info.colorType()) return false; if (!compatibleInfo(m_info, info) || m_rowBytes != dst->rowBytes()) return false; if (!dst->installPixels(info, m_pixels, m_rowBytes)) return false; dst->lockPixels(); return true; } private: SkImageInfo m_info; void* m_pixels; size_t m_rowBytes; }; static bool updateYUVComponentSizes(ImageDecoder* decoder, SkISize componentSizes[3], ImageDecoder::SizeType sizeType) { if (!decoder->canDecodeToYUV()) return false; IntSize size = decoder->decodedYUVSize(0, sizeType); componentSizes[0].set(size.width(), size.height()); size = decoder->decodedYUVSize(1, sizeType); componentSizes[1].set(size.width(), size.height()); size = decoder->decodedYUVSize(2, sizeType); componentSizes[2].set(size.width(), size.height()); return true; } ImageFrameGenerator::ImageFrameGenerator(const SkISize& fullSize, PassRefPtr data, bool allDataReceived, bool isMultiFrame) : m_fullSize(fullSize) , m_data(adoptRef(new ThreadSafeDataTransport())) , m_isMultiFrame(isMultiFrame) , m_decodeFailed(false) , m_frameCount(0) , m_encodedData(nullptr) { setData(data.get(), allDataReceived); } ImageFrameGenerator::~ImageFrameGenerator() { if (m_encodedData) m_encodedData->unref(); ImageDecodingStore::instance().removeCacheIndexedByGenerator(this); } void ImageFrameGenerator::setData(PassRefPtr data, bool allDataReceived) { m_data->setData(data.get(), allDataReceived); } static void sharedSkDataReleaseCallback(const void* address, void* context) { // This gets called when m_encodedData reference count becomes 0 - and it could happen in // ImageFrameGenerator destructor or later when m_encodedData gets dereferenced. // In this method, we deref ThreadSafeDataTransport, as ThreadSafeDataTransport is the owner // of data returned via refEncodedData. ThreadSafeDataTransport* dataTransport = static_cast(context); #if ENABLE(ASSERT) ASSERT(dataTransport); SharedBuffer* buffer = 0; bool allDataReceived = false; dataTransport->data(&buffer, &allDataReceived); ASSERT(allDataReceived && buffer && buffer->data() == address); #endif // Dereference m_data now. dataTransport->deref(); } SkData* ImageFrameGenerator::refEncodedData() { // SkData is returned only when full image (encoded) data is received. This is important // since DeferredImageDecoder::setData is called only once with allDataReceived set to true, // and after that m_data->m_readBuffer.data() is not changed. See also RELEASE_ASSERT used in // ThreadSafeDataTransport::data(). SharedBuffer* buffer = 0; bool allDataReceived = false; m_data->data(&buffer, &allDataReceived); if (!allDataReceived) return nullptr; { // Prevents concurrent access to m_encodedData creation. MutexLocker lock(m_decodeMutex); if (m_encodedData) { m_encodedData->ref(); return m_encodedData; } // m_encodedData is created with initial reference count == 1. ImageFrameGenerator always holds one // reference to m_encodedData, as it prevents write access in SkData::writable_data. m_encodedData = SkData::NewWithProc(buffer->data(), buffer->size(), sharedSkDataReleaseCallback, m_data.get()); // While m_encodedData is referenced, prevent disposing m_data and its content. // it is dereferenced in sharedSkDataReleaseCallback, called when m_encodedData gets dereferenced. m_data->ref(); } // Increase the reference, caller must decrease it. One reference is always kept by ImageFrameGenerator and released // in destructor. m_encodedData->ref(); return m_encodedData; } bool ImageFrameGenerator::decodeAndScale(size_t index, const SkImageInfo& info, void* pixels, size_t rowBytes) { // Prevent concurrent decode or scale operations on the same image data. MutexLocker lock(m_decodeMutex); if (m_decodeFailed) return false; TRACE_EVENT1("blink", "ImageFrameGenerator::decodeAndScale", "frame index", static_cast(index)); m_externalAllocator = adoptPtr(new ExternalMemoryAllocator(info, pixels, rowBytes)); // This implementation does not support scaling so check the requested size. SkISize scaledSize = SkISize::Make(info.width(), info.height()); ASSERT(m_fullSize == scaledSize); SkBitmap bitmap = tryToResumeDecode(index, scaledSize); if (bitmap.isNull()) return false; // Don't keep the allocator because it contains a pointer to memory // that we do not own. m_externalAllocator.clear(); // Check to see if the decoder has written directly to the pixel memory // provided. If not, make a copy. ASSERT(bitmap.width() == scaledSize.width()); ASSERT(bitmap.height() == scaledSize.height()); SkAutoLockPixels bitmapLock(bitmap); if (bitmap.getPixels() != pixels) return bitmap.copyPixelsTo(pixels, rowBytes * info.height(), rowBytes); return true; } bool ImageFrameGenerator::decodeToYUV(size_t index, SkISize componentSizes[3], void* planes[3], size_t rowBytes[3]) { // Prevent concurrent decode or scale operations on the same image data. MutexLocker lock(m_decodeMutex); if (m_decodeFailed) return false; TRACE_EVENT1("blink", "ImageFrameGenerator::decodeToYUV", "frame index", static_cast(index)); if (!planes || !planes[0] || !planes[1] || !planes[2] || !rowBytes || !rowBytes[0] || !rowBytes[1] || !rowBytes[2]) { return false; } SharedBuffer* data = 0; bool allDataReceived = false; m_data->data(&data, &allDataReceived); // FIXME: YUV decoding does not currently support progressive decoding. ASSERT(allDataReceived); OwnPtr decoder = ImageDecoder::create(*data, ImageDecoder::AlphaPremultiplied, ImageDecoder::GammaAndColorProfileApplied); if (!decoder) return false; decoder->setData(data, allDataReceived); OwnPtr imagePlanes = adoptPtr(new ImagePlanes(planes, rowBytes)); decoder->setImagePlanes(imagePlanes.release()); bool sizeUpdated = updateYUVComponentSizes(decoder.get(), componentSizes, ImageDecoder::ActualSize); RELEASE_ASSERT(sizeUpdated); if (decoder->decodeToYUV()) { setHasAlpha(0, false); // YUV is always opaque return true; } ASSERT(decoder->failed()); m_decodeFailed = true; return false; } SkBitmap ImageFrameGenerator::tryToResumeDecode(size_t index, const SkISize& scaledSize) { TRACE_EVENT1("blink", "ImageFrameGenerator::tryToResumeDecode", "frame index", static_cast(index)); ImageDecoder* decoder = 0; const bool resumeDecoding = ImageDecodingStore::instance().lockDecoder(this, m_fullSize, &decoder); ASSERT(!resumeDecoding || decoder); SkBitmap fullSizeImage; bool complete = decode(index, &decoder, &fullSizeImage); if (!decoder) return SkBitmap(); if (index >= m_frameComplete.size()) m_frameComplete.resize(index + 1); m_frameComplete[index] = complete; // If we are not resuming decoding that means the decoder is freshly // created and we have ownership. If we are resuming decoding then // the decoder is owned by ImageDecodingStore. OwnPtr decoderContainer; if (!resumeDecoding) decoderContainer = adoptPtr(decoder); if (fullSizeImage.isNull()) { // If decoding has failed, we can save work in the future by // ignoring further requests to decode the image. m_decodeFailed = decoder->failed(); if (resumeDecoding) ImageDecodingStore::instance().unlockDecoder(this, decoder); return SkBitmap(); } // If the image generated is complete then there is no need to keep // the decoder. For multi-frame images, if all frames in the image are // decoded, we remove the decoder. bool removeDecoder; if (m_isMultiFrame) { size_t decodedFrameCount = 0; for (Vector::iterator it = m_frameComplete.begin(); it != m_frameComplete.end(); ++it) { if (*it) decodedFrameCount++; } removeDecoder = m_frameCount && (decodedFrameCount == m_frameCount); } else { removeDecoder = complete; } if (resumeDecoding) { if (removeDecoder) { ImageDecodingStore::instance().removeDecoder(this, decoder); m_frameComplete.clear(); } else { ImageDecodingStore::instance().unlockDecoder(this, decoder); } } else if (!removeDecoder) { ImageDecodingStore::instance().insertDecoder(this, decoderContainer.release()); } return fullSizeImage; } void ImageFrameGenerator::setHasAlpha(size_t index, bool hasAlpha) { MutexLocker lock(m_alphaMutex); if (index >= m_hasAlpha.size()) { const size_t oldSize = m_hasAlpha.size(); m_hasAlpha.resize(index + 1); for (size_t i = oldSize; i < m_hasAlpha.size(); ++i) m_hasAlpha[i] = true; } m_hasAlpha[index] = hasAlpha; } bool ImageFrameGenerator::decode(size_t index, ImageDecoder** decoder, SkBitmap* bitmap) { TRACE_EVENT2("blink", "ImageFrameGenerator::decode", "width", m_fullSize.width(), "height", m_fullSize.height()); SharedBuffer* data = 0; bool allDataReceived = false; m_data->data(&data, &allDataReceived); // Try to create an ImageDecoder if we are not given one. ASSERT(decoder); bool newDecoder = false; if (!*decoder) { newDecoder = true; if (m_imageDecoderFactory) *decoder = m_imageDecoderFactory->create().leakPtr(); if (!*decoder) *decoder = ImageDecoder::create(*data, ImageDecoder::AlphaPremultiplied, ImageDecoder::GammaAndColorProfileApplied).leakPtr(); if (!*decoder) return false; } if (!m_isMultiFrame && newDecoder && allDataReceived) { // If we're using an external memory allocator that means we're decoding // directly into the output memory and we can save one memcpy. ASSERT(m_externalAllocator.get()); (*decoder)->setMemoryAllocator(m_externalAllocator.get()); } (*decoder)->setData(data, allDataReceived); ImageFrame* frame = (*decoder)->frameBufferAtIndex(index); // For multi-frame image decoders, we need to know how many frames are // in that image in order to release the decoder when all frames are // decoded. frameCount() is reliable only if all data is received and set in // decoder, particularly with GIF. if (allDataReceived) m_frameCount = (*decoder)->frameCount(); (*decoder)->setData(0, false); // Unref SharedBuffer from ImageDecoder. (*decoder)->clearCacheExceptFrame(index); (*decoder)->setMemoryAllocator(0); if (!frame || frame->status() == ImageFrame::FrameEmpty) return false; // A cache object is considered complete if we can decode a complete frame. // Or we have received all data. The image might not be fully decoded in // the latter case. const bool isDecodeComplete = frame->status() == ImageFrame::FrameComplete || allDataReceived; SkBitmap fullSizeBitmap = frame->getSkBitmap(); if (!fullSizeBitmap.isNull()) { ASSERT(fullSizeBitmap.width() == m_fullSize.width() && fullSizeBitmap.height() == m_fullSize.height()); setHasAlpha(index, !fullSizeBitmap.isOpaque()); } *bitmap = fullSizeBitmap; return isDecodeComplete; } bool ImageFrameGenerator::hasAlpha(size_t index) { MutexLocker lock(m_alphaMutex); if (index < m_hasAlpha.size()) return m_hasAlpha[index]; return true; } bool ImageFrameGenerator::getYUVComponentSizes(SkISize componentSizes[3]) { TRACE_EVENT2("blink", "ImageFrameGenerator::getYUVComponentSizes", "width", m_fullSize.width(), "height", m_fullSize.height()); SharedBuffer* data = 0; bool allDataReceived = false; m_data->data(&data, &allDataReceived); // FIXME: YUV decoding does not currently support progressive decoding. if (!allDataReceived) return false; OwnPtr decoder = ImageDecoder::create(*data, ImageDecoder::AlphaPremultiplied, ImageDecoder::GammaAndColorProfileApplied); if (!decoder) return false; // Setting a dummy ImagePlanes object signals to the decoder that we want to do YUV decoding. decoder->setData(data, allDataReceived); OwnPtr dummyImagePlanes = adoptPtr(new ImagePlanes); decoder->setImagePlanes(dummyImagePlanes.release()); ASSERT(componentSizes); return updateYUVComponentSizes(decoder.get(), componentSizes, ImageDecoder::SizeForMemoryAllocation); } } // namespace blink