/* * Copyright (C) 2011 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include "wtf/HashMap.h" #include "testing/gtest/include/gtest/gtest.h" #include "wtf/OwnPtr.h" #include "wtf/PassOwnPtr.h" #include "wtf/PassRefPtr.h" #include "wtf/RefCounted.h" #include "wtf/Vector.h" namespace WTF { namespace { using IntHashMap = HashMap; TEST(HashMapTest, IteratorComparison) { IntHashMap map; map.add(1, 2); EXPECT_TRUE(map.begin() != map.end()); EXPECT_FALSE(map.begin() == map.end()); IntHashMap::const_iterator begin = map.begin(); EXPECT_TRUE(begin == map.begin()); EXPECT_TRUE(map.begin() == begin); EXPECT_TRUE(begin != map.end()); EXPECT_TRUE(map.end() != begin); EXPECT_FALSE(begin != map.begin()); EXPECT_FALSE(map.begin() != begin); EXPECT_FALSE(begin == map.end()); EXPECT_FALSE(map.end() == begin); } struct TestDoubleHashTraits : HashTraits { static const unsigned minimumTableSize = 8; }; using DoubleHashMap = HashMap::Hash, TestDoubleHashTraits>; int bucketForKey(double key) { return DefaultHash::Hash::hash(key) & (TestDoubleHashTraits::minimumTableSize - 1); } TEST(HashMapTest, DoubleHashCollisions) { // The "clobber" key here is one that ends up stealing the bucket that the -0 key // originally wants to be in. This makes the 0 and -0 keys collide and the test then // fails unless the FloatHash::equals() implementation can distinguish them. const double clobberKey = 6; const double zeroKey = 0; const double negativeZeroKey = -zeroKey; DoubleHashMap map; map.add(clobberKey, 1); map.add(zeroKey, 2); map.add(negativeZeroKey, 3); EXPECT_EQ(bucketForKey(clobberKey), bucketForKey(negativeZeroKey)); EXPECT_EQ(1, map.get(clobberKey)); EXPECT_EQ(2, map.get(zeroKey)); EXPECT_EQ(3, map.get(negativeZeroKey)); } class DestructCounter { public: explicit DestructCounter(int i, int* destructNumber) : m_i(i) , m_destructNumber(destructNumber) { } ~DestructCounter() { ++(*m_destructNumber); } int get() const { return m_i; } private: int m_i; int* m_destructNumber; }; using OwnPtrHashMap = HashMap>; TEST(HashMapTest, OwnPtrAsValue) { int destructNumber = 0; OwnPtrHashMap map; map.add(1, adoptPtr(new DestructCounter(1, &destructNumber))); map.add(2, adoptPtr(new DestructCounter(2, &destructNumber))); DestructCounter* counter1 = map.get(1); EXPECT_EQ(1, counter1->get()); DestructCounter* counter2 = map.get(2); EXPECT_EQ(2, counter2->get()); EXPECT_EQ(0, destructNumber); for (OwnPtrHashMap::iterator iter = map.begin(); iter != map.end(); ++iter) { OwnPtr& ownCounter = iter->value; EXPECT_EQ(iter->key, ownCounter->get()); } ASSERT_EQ(0, destructNumber); OwnPtr ownCounter1 = map.take(1); EXPECT_EQ(ownCounter1.get(), counter1); EXPECT_FALSE(map.contains(1)); EXPECT_EQ(0, destructNumber); map.remove(2); EXPECT_FALSE(map.contains(2)); EXPECT_EQ(0UL, map.size()); EXPECT_EQ(1, destructNumber); ownCounter1.clear(); EXPECT_EQ(2, destructNumber); } class DummyRefCounted : public RefCounted { public: DummyRefCounted(bool& isDeleted) : m_isDeleted(isDeleted) { m_isDeleted = false; } ~DummyRefCounted() { ASSERT(!m_isDeleted); m_isDeleted = true; } void ref() { ASSERT(!m_isDeleted); WTF::RefCounted::ref(); ++m_refInvokesCount; } void deref() { ASSERT(!m_isDeleted); WTF::RefCounted::deref(); } static int m_refInvokesCount; private: bool& m_isDeleted; }; int DummyRefCounted::m_refInvokesCount = 0; TEST(HashMapTest, RefPtrAsKey) { bool isDeleted = false; DummyRefCounted::m_refInvokesCount = 0; RefPtr ptr = adoptRef(new DummyRefCounted(isDeleted)); EXPECT_EQ(0, DummyRefCounted::m_refInvokesCount); HashMap, int> map; map.add(ptr, 1); // Referenced only once (to store a copy in the container). EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount); EXPECT_EQ(1, map.get(ptr)); DummyRefCounted* rawPtr = ptr.get(); EXPECT_TRUE(map.contains(rawPtr)); EXPECT_NE(map.end(), map.find(rawPtr)); EXPECT_TRUE(map.contains(ptr)); EXPECT_NE(map.end(), map.find(ptr)); EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount); ptr.clear(); EXPECT_FALSE(isDeleted); map.remove(rawPtr); EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount); EXPECT_TRUE(isDeleted); EXPECT_TRUE(map.isEmpty()); } TEST(HashMaptest, RemoveAdd) { DummyRefCounted::m_refInvokesCount = 0; bool isDeleted = false; typedef HashMap> Map; Map map; RefPtr ptr = adoptRef(new DummyRefCounted(isDeleted)); EXPECT_EQ(0, DummyRefCounted::m_refInvokesCount); map.add(1, ptr); // Referenced only once (to store a copy in the container). EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount); EXPECT_EQ(ptr, map.get(1)); ptr.clear(); EXPECT_FALSE(isDeleted); map.remove(1); EXPECT_EQ(1, DummyRefCounted::m_refInvokesCount); EXPECT_TRUE(isDeleted); EXPECT_TRUE(map.isEmpty()); // Add and remove until the deleted slot is reused. for (int i = 1; i < 100; i++) { bool isDeleted2 = false; RefPtr ptr2 = adoptRef(new DummyRefCounted(isDeleted2)); map.add(i, ptr2); EXPECT_FALSE(isDeleted2); ptr2.clear(); EXPECT_FALSE(isDeleted2); map.remove(i); EXPECT_TRUE(isDeleted2); } } class SimpleClass { public: explicit SimpleClass(int v) : m_v(v) { } int v() { return m_v; } private: int m_v; }; using IntSimpleMap = HashMap>; TEST(HashMapTest, AddResult) { IntSimpleMap map; IntSimpleMap::AddResult result = map.add(1, nullptr); EXPECT_TRUE(result.isNewEntry); EXPECT_EQ(1, result.storedValue->key); EXPECT_EQ(0, result.storedValue->value.get()); SimpleClass* simple1 = new SimpleClass(1); result.storedValue->value = adoptPtr(simple1); EXPECT_EQ(simple1, map.get(1)); IntSimpleMap::AddResult result2 = map.add(1, adoptPtr(new SimpleClass(2))); EXPECT_FALSE(result2.isNewEntry); EXPECT_EQ(1, result.storedValue->key); EXPECT_EQ(1, result.storedValue->value->v()); EXPECT_EQ(1, map.get(1)->v()); } TEST(HashMapTest, AddResultVectorValue) { using IntVectorMap = HashMap>; IntVectorMap map; IntVectorMap::AddResult result = map.add(1, Vector()); EXPECT_TRUE(result.isNewEntry); EXPECT_EQ(1, result.storedValue->key); EXPECT_EQ(0u, result.storedValue->value.size()); result.storedValue->value.append(11); EXPECT_EQ(1u, map.find(1)->value.size()); EXPECT_EQ(11, map.find(1)->value.first()); IntVectorMap::AddResult result2 = map.add(1, Vector()); EXPECT_FALSE(result2.isNewEntry); EXPECT_EQ(1, result.storedValue->key); EXPECT_EQ(1u, result.storedValue->value.size()); EXPECT_EQ(11, result.storedValue->value.first()); EXPECT_EQ(11, map.find(1)->value.first()); } class InstanceCounter { public: InstanceCounter() { ++counter; } InstanceCounter(const InstanceCounter& another) { ++counter; } ~InstanceCounter() { --counter; } static int counter; }; int InstanceCounter::counter = 0; TEST(HashMapTest, ValueTypeDestructed) { InstanceCounter::counter = 0; HashMap map; map.set(1, InstanceCounter()); map.clear(); EXPECT_EQ(0, InstanceCounter::counter); } class MoveOnly { public: // kEmpty and kDeleted have special meanings when MoveOnly is used as the key of a hash table. enum { kEmpty = 0, kDeleted = -1, kMovedOut = -2 }; explicit MoveOnly(int value = kEmpty) : m_value(value) { } MoveOnly(MoveOnly&& other) : m_value(other.m_value) { other.m_value = kMovedOut; } MoveOnly& operator=(MoveOnly&& other) { m_value = other.m_value; other.m_value = kMovedOut; return *this; } int value() const { return m_value; } private: MoveOnly(const MoveOnly&) = delete; MoveOnly& operator=(const MoveOnly&) = delete; int m_value; }; struct MoveOnlyHashTraits : public GenericHashTraits { // This is actually true, but we pretend that it's false to disable the optimization. static const bool emptyValueIsZero = false; static const bool hasIsEmptyValueFunction = true; static bool isEmptyValue(const MoveOnly& value) { return value.value() == MoveOnly::kEmpty; } static void constructDeletedValue(MoveOnly& slot, bool) { slot = MoveOnly(MoveOnly::kDeleted); } static bool isDeletedValue(const MoveOnly& value) { return value.value() == MoveOnly::kDeleted; } }; struct MoveOnlyHash { static unsigned hash(const MoveOnly& value) { return DefaultHash::Hash::hash(value.value()); } static bool equal(const MoveOnly& left, const MoveOnly& right) { return DefaultHash::Hash::equal(left.value(), right.value()); } static const bool safeToCompareToEmptyOrDeleted = true; }; } // anonymous namespace template <> struct HashTraits : public MoveOnlyHashTraits { }; template <> struct DefaultHash { using Hash = MoveOnlyHash; }; namespace { TEST(HashMapTest, MoveOnlyValueType) { using TheMap = HashMap; TheMap map; { TheMap::AddResult addResult = map.add(1, MoveOnly(10)); EXPECT_TRUE(addResult.isNewEntry); EXPECT_EQ(1, addResult.storedValue->key); EXPECT_EQ(10, addResult.storedValue->value.value()); } auto iter = map.find(1); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(1, iter->key); EXPECT_EQ(10, iter->value.value()); iter = map.find(2); EXPECT_TRUE(iter == map.end()); // Try to add more to trigger rehashing. for (int i = 2; i < 32; ++i) { TheMap::AddResult addResult = map.add(i, MoveOnly(i * 10)); EXPECT_TRUE(addResult.isNewEntry); EXPECT_EQ(i, addResult.storedValue->key); EXPECT_EQ(i * 10, addResult.storedValue->value.value()); } iter = map.find(1); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(1, iter->key); EXPECT_EQ(10, iter->value.value()); iter = map.find(7); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(7, iter->key); EXPECT_EQ(70, iter->value.value()); { TheMap::AddResult addResult = map.set(9, MoveOnly(999)); EXPECT_FALSE(addResult.isNewEntry); EXPECT_EQ(9, addResult.storedValue->key); EXPECT_EQ(999, addResult.storedValue->value.value()); } map.remove(11); iter = map.find(11); EXPECT_TRUE(iter == map.end()); MoveOnly oneThirty(map.take(13)); EXPECT_EQ(130, oneThirty.value()); iter = map.find(13); EXPECT_TRUE(iter == map.end()); map.clear(); } TEST(HashMapTest, MoveOnlyKeyType) { // The content of this test is similar to the test above, except that the types of key and value are swapped. using TheMap = HashMap; TheMap map; { TheMap::AddResult addResult = map.add(MoveOnly(1), 10); EXPECT_TRUE(addResult.isNewEntry); EXPECT_EQ(1, addResult.storedValue->key.value()); EXPECT_EQ(10, addResult.storedValue->value); } auto iter = map.find(MoveOnly(1)); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(1, iter->key.value()); EXPECT_EQ(10, iter->value); iter = map.find(MoveOnly(2)); EXPECT_TRUE(iter == map.end()); for (int i = 2; i < 32; ++i) { TheMap::AddResult addResult = map.add(MoveOnly(i), i * 10); EXPECT_TRUE(addResult.isNewEntry); EXPECT_EQ(i, addResult.storedValue->key.value()); EXPECT_EQ(i * 10, addResult.storedValue->value); } iter = map.find(MoveOnly(1)); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(1, iter->key.value()); EXPECT_EQ(10, iter->value); iter = map.find(MoveOnly(7)); ASSERT_TRUE(iter != map.end()); EXPECT_EQ(7, iter->key.value()); EXPECT_EQ(70, iter->value); { TheMap::AddResult addResult = map.set(MoveOnly(9), 999); EXPECT_FALSE(addResult.isNewEntry); EXPECT_EQ(9, addResult.storedValue->key.value()); EXPECT_EQ(999, addResult.storedValue->value); } map.remove(MoveOnly(11)); iter = map.find(MoveOnly(11)); EXPECT_TRUE(iter == map.end()); int oneThirty = map.take(MoveOnly(13)); EXPECT_EQ(130, oneThirty); iter = map.find(MoveOnly(13)); EXPECT_TRUE(iter == map.end()); map.clear(); } class CountCopy final { public: CountCopy() : m_counter(nullptr) { } explicit CountCopy(int& counter) : m_counter(&counter) { } CountCopy(const CountCopy& other) : m_counter(other.m_counter) { if (m_counter) ++*m_counter; } private: int* m_counter; }; TEST(HashMapTest, MoveShouldNotMakeCopy) { HashMap map; int counter = 0; map.add(1, CountCopy(counter)); HashMap other(map); counter = 0; map = std::move(other); EXPECT_EQ(0, counter); counter = 0; HashMap yetAnother(std::move(map)); EXPECT_EQ(0, counter); } } // anonymous namespace } // namespace WTF