/* * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef WTF_MathExtras_h #define WTF_MathExtras_h #include "wtf/Allocator.h" #include "wtf/Assertions.h" #include "wtf/CPU.h" #include #include #include #if COMPILER(MSVC) // Make math.h behave like other platforms. #define _USE_MATH_DEFINES // Even if math.h was already inlcuded, including math.h again with // _USE_MATH_DEFINES adds the extra defines. #include #include #endif #if OS(OPENBSD) #include #include #endif const double piDouble = M_PI; const float piFloat = static_cast(M_PI); const double piOverTwoDouble = M_PI_2; const float piOverTwoFloat = static_cast(M_PI_2); const double piOverFourDouble = M_PI_4; const float piOverFourFloat = static_cast(M_PI_4); const double twoPiDouble = piDouble * 2.0; const float twoPiFloat = piFloat * 2.0f; #if OS(ANDROID) || COMPILER(MSVC) // ANDROID and MSVC's math.h does not currently supply log2 or log2f. inline double log2(double num) { // This constant is roughly M_LN2, which is not provided by default on Windows and Android. return log(num) / 0.693147180559945309417232121458176568; } inline float log2f(float num) { // This constant is roughly M_LN2, which is not provided by default on Windows and Android. return logf(num) / 0.693147180559945309417232121458176568f; } #endif #if COMPILER(MSVC) // VS2013 has most of the math functions now, but we still need to work // around various differences in behavior of Inf. // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. inline double wtf_atan2(double x, double y) { double posInf = std::numeric_limits::infinity(); double negInf = -std::numeric_limits::infinity(); double nan = std::numeric_limits::quiet_NaN(); double result = nan; if (x == posInf && y == posInf) result = piOverFourDouble; else if (x == posInf && y == negInf) result = 3 * piOverFourDouble; else if (x == negInf && y == posInf) result = -piOverFourDouble; else if (x == negInf && y == negInf) result = -3 * piOverFourDouble; else result = ::atan2(x, y); return result; } // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x. inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); } // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1. inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); } #define atan2(x, y) wtf_atan2(x, y) #define fmod(x, y) wtf_fmod(x, y) #define pow(x, y) wtf_pow(x, y) #endif // COMPILER(MSVC) inline double deg2rad(double d) { return d * piDouble / 180.0; } inline double rad2deg(double r) { return r * 180.0 / piDouble; } inline double deg2grad(double d) { return d * 400.0 / 360.0; } inline double grad2deg(double g) { return g * 360.0 / 400.0; } inline double turn2deg(double t) { return t * 360.0; } inline double deg2turn(double d) { return d / 360.0; } inline double rad2grad(double r) { return r * 200.0 / piDouble; } inline double grad2rad(double g) { return g * piDouble / 200.0; } inline double turn2grad(double t) { return t * 400; } inline double grad2turn(double g) { return g / 400; } inline float deg2rad(float d) { return d * piFloat / 180.0f; } inline float rad2deg(float r) { return r * 180.0f / piFloat; } inline float deg2grad(float d) { return d * 400.0f / 360.0f; } inline float grad2deg(float g) { return g * 360.0f / 400.0f; } inline float turn2deg(float t) { return t * 360.0f; } inline float deg2turn(float d) { return d / 360.0f; } inline float rad2grad(float r) { return r * 200.0f / piFloat; } inline float grad2rad(float g) { return g * piFloat / 200.0f; } inline float turn2grad(float t) { return t * 400; } inline float grad2turn(float g) { return g / 400; } // clampTo() is implemented by templated helper classes (to allow for partial // template specialization) as well as several helper functions. // This helper function can be called when we know that: // (1) The type signednesses match so the compiler will not produce signed vs. // unsigned warnings // (2) The default type promotions/conversions are sufficient to handle things // correctly template inline LimitType clampToDirectComparison(ValueType value, LimitType min, LimitType max) { if (value >= max) return max; return (value <= min) ? min : static_cast(value); } // For any floating-point limits, or integral limits smaller than long long, we // can cast the limits to double without losing precision; then the only cases // where |value| can't be represented accurately as a double are the ones where // it's outside the limit range anyway. So doing all comparisons as doubles // will give correct results. // // In some cases, we can get better performance by using // clampToDirectComparison(). We use a templated class to switch between these // two cases (instead of simply using a conditional within one function) in // order to only compile the clampToDirectComparison() code for cases where it // will actually be used; this prevents the compiler from emitting warnings // about unsafe code (even though we wouldn't actually be executing that code). template class ClampToNonLongLongHelper; template class ClampToNonLongLongHelper { STATIC_ONLY(ClampToNonLongLongHelper); public: static inline LimitType clampTo(ValueType value, LimitType min, LimitType max) { return clampToDirectComparison(value, min, max); } }; template class ClampToNonLongLongHelper { STATIC_ONLY(ClampToNonLongLongHelper); public: static inline LimitType clampTo(ValueType value, LimitType min, LimitType max) { const double doubleValue = static_cast(value); if (doubleValue >= static_cast(max)) return max; if (doubleValue <= static_cast(min)) return min; // If the limit type is integer, we might get better performance by // casting |value| (as opposed to |doubleValue|) to the limit type. return std::numeric_limits::is_integer ? static_cast(value) : static_cast(doubleValue); } }; // The unspecialized version of this templated class handles clamping to // anything other than [unsigned] long long int limits. It simply uses the // class above to toggle between the "fast" and "safe" clamp implementations. template class ClampToHelper { public: static inline LimitType clampTo(ValueType value, LimitType min, LimitType max) { // We only use clampToDirectComparison() when the integerness and // signedness of the two types matches. // // If the integerness of the types doesn't match, then at best // clampToDirectComparison() won't be much more efficient than the // cast-everything-to-double method, since we'll need to convert to // floating point anyway; at worst, we risk incorrect results when // clamping a float to a 32-bit integral type due to potential precision // loss. // // If the signedness doesn't match, clampToDirectComparison() will // produce warnings about comparing signed vs. unsigned, which are apt // since negative signed values will be converted to large unsigned ones // and we'll get incorrect results. return ClampToNonLongLongHelper::is_integer == std::numeric_limits::is_integer && std::numeric_limits::is_signed == std::numeric_limits::is_signed, LimitType, ValueType>::clampTo(value, min, max); } }; // Clamping to [unsigned] long long int limits requires more care. These may // not be accurately representable as doubles, so instead we cast |value| to the // limit type. But that cast is undefined if |value| is floating point and // outside the representable range of the limit type, so we also have to check // for that case explicitly. template class ClampToHelper { STATIC_ONLY(ClampToHelper); public: static inline long long int clampTo(ValueType value, long long int min, long long int max) { if (!std::numeric_limits::is_integer) { if (value > 0) { if (static_cast(value) >= static_cast(std::numeric_limits::max())) return max; } else if (static_cast(value) <= static_cast(std::numeric_limits::min())) { return min; } } // Note: If |value| were unsigned long long int, it could be larger than // the largest long long int, and this code would be wrong; we handle // this case with a separate full specialization below. return clampToDirectComparison(static_cast(value), min, max); } }; // This specialization handles the case where the above partial specialization // would be potentially incorrect. template<> class ClampToHelper { STATIC_ONLY(ClampToHelper); public: static inline long long int clampTo(unsigned long long int value, long long int min, long long int max) { if (max <= 0 || value >= static_cast(max)) return max; const long long int longLongValue = static_cast(value); return (longLongValue <= min) ? min : longLongValue; } }; // This is similar to the partial specialization that clamps to long long int, // but because the lower-bound check is done for integer value types as well, we // don't need a full specialization. template class ClampToHelper { STATIC_ONLY(ClampToHelper); public: static inline unsigned long long int clampTo(ValueType value, unsigned long long int min, unsigned long long int max) { if (value <= 0) return min; if (!std::numeric_limits::is_integer) { if (static_cast(value) >= static_cast(std::numeric_limits::max())) return max; } return clampToDirectComparison(static_cast(value), min, max); } }; template inline T defaultMaximumForClamp() { return std::numeric_limits::max(); } // This basically reimplements C++11's std::numeric_limits::lowest(). template inline T defaultMinimumForClamp() { return std::numeric_limits::min(); } template<> inline float defaultMinimumForClamp() { return -std::numeric_limits::max(); } template<> inline double defaultMinimumForClamp() { return -std::numeric_limits::max(); } // And, finally, the actual function for people to call. template inline LimitType clampTo(ValueType value, LimitType min = defaultMinimumForClamp(), LimitType max = defaultMaximumForClamp()) { ASSERT(!std::isnan(static_cast(value))); ASSERT(min <= max); // This also ensures |min| and |max| aren't NaN. return ClampToHelper::clampTo(value, min, max); } inline bool isWithinIntRange(float x) { return x > static_cast(std::numeric_limits::min()) && x < static_cast(std::numeric_limits::max()); } static size_t greatestCommonDivisor(size_t a, size_t b) { return b ? greatestCommonDivisor(b, a % b) : a; } inline size_t lowestCommonMultiple(size_t a, size_t b) { return a && b ? a / greatestCommonDivisor(a, b) * b : 0; } #ifndef UINT64_C #if COMPILER(MSVC) #define UINT64_C(c) c ## ui64 #else #define UINT64_C(c) c ## ull #endif #endif // Calculate d % 2^{64}. inline void doubleToInteger(double d, unsigned long long& value) { if (std::isnan(d) || std::isinf(d)) { value = 0; } else { // -2^{64} < fmodValue < 2^{64}. double fmodValue = fmod(trunc(d), std::numeric_limits::max() + 1.0); if (fmodValue >= 0) { // 0 <= fmodValue < 2^{64}. // 0 <= value < 2^{64}. This cast causes no loss. value = static_cast(fmodValue); } else { // -2^{64} < fmodValue < 0. // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. unsigned long long fmodValueInUnsignedLongLong = static_cast(-fmodValue); // -1 < (std::numeric_limits::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. // 0 < value < 2^{64}. value = std::numeric_limits::max() - fmodValueInUnsignedLongLong + 1; } } } namespace WTF { inline unsigned fastLog2(unsigned i) { unsigned log2 = 0; if (i & (i - 1)) log2 += 1; if (i >> 16) log2 += 16, i >>= 16; if (i >> 8) log2 += 8, i >>= 8; if (i >> 4) log2 += 4, i >>= 4; if (i >> 2) log2 += 2, i >>= 2; if (i >> 1) log2 += 1; return log2; } } // namespace WTF #endif // #ifndef WTF_MathExtras_h