/******************************************************************************* mach_override.c Copyright (c) 2003-2009 Jonathan 'Wolf' Rentzsch: Some rights reserved: ***************************************************************************/ #include "mach_override.h" #include #include #include #include #include #include /************************** * * Constants * **************************/ #pragma mark - #pragma mark (Constants) #if defined(__ppc__) || defined(__POWERPC__) long kIslandTemplate[] = { 0x9001FFFC, // stw r0,-4(SP) 0x3C00DEAD, // lis r0,0xDEAD 0x6000BEEF, // ori r0,r0,0xBEEF 0x7C0903A6, // mtctr r0 0x8001FFFC, // lwz r0,-4(SP) 0x60000000, // nop ; optionally replaced 0x4E800420 // bctr }; #define kAddressHi 3 #define kAddressLo 5 #define kInstructionHi 10 #define kInstructionLo 11 #elif defined(__i386__) #define kOriginalInstructionsSize 16 char kIslandTemplate[] = { // kOriginalInstructionsSize nop instructions so that we // should have enough space to host original instructions 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // Now the real jump instruction 0xE9, 0xEF, 0xBE, 0xAD, 0xDE }; #define kInstructions 0 #define kJumpAddress kInstructions + kOriginalInstructionsSize + 1 #elif defined(__x86_64__) #define kOriginalInstructionsSize 32 #define kJumpAddress kOriginalInstructionsSize + 6 char kIslandTemplate[] = { // kOriginalInstructionsSize nop instructions so that we // should have enough space to host original instructions 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, // Now the real jump instruction 0xFF, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; #endif #define kAllocateHigh 1 #define kAllocateNormal 0 /************************** * * Data Types * **************************/ #pragma mark - #pragma mark (Data Types) typedef struct { char instructions[sizeof(kIslandTemplate)]; int allocatedHigh; } BranchIsland; /************************** * * Funky Protos * **************************/ #pragma mark - #pragma mark (Funky Protos) mach_error_t allocateBranchIsland( BranchIsland **island, int allocateHigh, void *originalFunctionAddress); mach_error_t freeBranchIsland( BranchIsland *island ); #if defined(__ppc__) || defined(__POWERPC__) mach_error_t setBranchIslandTarget( BranchIsland *island, const void *branchTo, long instruction ); #endif #if defined(__i386__) || defined(__x86_64__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ); void atomic_mov64( uint64_t *targetAddress, uint64_t value ); static Boolean eatKnownInstructions( unsigned char *code, uint64_t *newInstruction, int *howManyEaten, char *originalInstructions ); #endif /******************************************************************************* * * Interface * *******************************************************************************/ #pragma mark - #pragma mark (Interface) #if defined(__x86_64__) mach_error_t makeIslandExecutable(void *address) { mach_error_t err = err_none; vm_size_t pageSize; host_page_size( mach_host_self(), &pageSize ); uint64_t page = (uint64_t)address & ~(uint64_t)(pageSize-1); int e = err_none; e |= mprotect((void *)page, pageSize, PROT_EXEC | PROT_READ | PROT_WRITE); e |= msync((void *)page, pageSize, MS_INVALIDATE ); if (e) { err = err_cannot_override; } return err; } #endif mach_error_t mach_override_ptr( void *originalFunctionAddress, const void *overrideFunctionAddress, void **originalFunctionReentryIsland ) { assert( originalFunctionAddress ); assert( overrideFunctionAddress ); long *originalFunctionPtr = (long*) originalFunctionAddress; mach_error_t err = err_none; #if defined(__ppc__) || defined(__POWERPC__) // Ensure first instruction isn't 'mfctr'. #define kMFCTRMask 0xfc1fffff #define kMFCTRInstruction 0x7c0903a6 long originalInstruction = *originalFunctionPtr; if( !err && ((originalInstruction & kMFCTRMask) == kMFCTRInstruction) ) err = err_cannot_override; #elif defined(__i386__) || defined(__x86_64__) int eatenCount = 0; char originalInstructions[kOriginalInstructionsSize]; uint64_t jumpRelativeInstruction = 0; // JMP Boolean overridePossible = eatKnownInstructions ((unsigned char *)originalFunctionPtr, &jumpRelativeInstruction, &eatenCount, originalInstructions); if (eatenCount > kOriginalInstructionsSize) { //printf ("Too many instructions eaten\n"); overridePossible = false; } if (!overridePossible) err = err_cannot_override; if (err) printf("err = %x %d\n", err, __LINE__); #endif // Make the original function implementation writable. if( !err ) { err = vm_protect( mach_task_self(), (vm_address_t) originalFunctionPtr, sizeof(long), false, (VM_PROT_ALL | VM_PROT_COPY) ); if( err ) err = vm_protect( mach_task_self(), (vm_address_t) originalFunctionPtr, sizeof(long), false, (VM_PROT_DEFAULT | VM_PROT_COPY) ); } if (err) printf("err = %x %d\n", err, __LINE__); // Allocate and target the escape island to the overriding function. BranchIsland *escapeIsland = NULL; if( !err ) err = allocateBranchIsland( &escapeIsland, kAllocateHigh, originalFunctionAddress ); if (err) printf("err = %x %d\n", err, __LINE__); #if defined(__ppc__) || defined(__POWERPC__) if( !err ) err = setBranchIslandTarget( escapeIsland, overrideFunctionAddress, 0 ); // Build the branch absolute instruction to the escape island. long branchAbsoluteInstruction = 0; // Set to 0 just to silence warning. if( !err ) { long escapeIslandAddress = ((long) escapeIsland) & 0x3FFFFFF; branchAbsoluteInstruction = 0x48000002 | escapeIslandAddress; } #elif defined(__i386__) || defined(__x86_64__) if (err) printf("err = %x %d\n", err, __LINE__); if( !err ) err = setBranchIslandTarget_i386( escapeIsland, overrideFunctionAddress, 0 ); if (err) printf("err = %x %d\n", err, __LINE__); // Build the jump relative instruction to the escape island #endif #if defined(__i386__) || defined(__x86_64__) if (!err) { uint32_t addressOffset = ((void*)escapeIsland - (void*)originalFunctionPtr - 5); addressOffset = OSSwapInt32(addressOffset); jumpRelativeInstruction |= 0xE900000000000000LL; jumpRelativeInstruction |= ((uint64_t)addressOffset & 0xffffffff) << 24; jumpRelativeInstruction = OSSwapInt64(jumpRelativeInstruction); } #endif // Optionally allocate & return the reentry island. BranchIsland *reentryIsland = NULL; if( !err && originalFunctionReentryIsland ) { err = allocateBranchIsland( &reentryIsland, kAllocateNormal, NULL); if( !err ) *originalFunctionReentryIsland = reentryIsland; } #if defined(__ppc__) || defined(__POWERPC__) // Atomically: // o If the reentry island was allocated: // o Insert the original instruction into the reentry island. // o Target the reentry island at the 2nd instruction of the // original function. // o Replace the original instruction with the branch absolute. if( !err ) { int escapeIslandEngaged = false; do { if( reentryIsland ) err = setBranchIslandTarget( reentryIsland, (void*) (originalFunctionPtr+1), originalInstruction ); if( !err ) { escapeIslandEngaged = CompareAndSwap( originalInstruction, branchAbsoluteInstruction, (UInt32*)originalFunctionPtr ); if( !escapeIslandEngaged ) { // Someone replaced the instruction out from under us, // re-read the instruction, make sure it's still not // 'mfctr' and try again. originalInstruction = *originalFunctionPtr; if( (originalInstruction & kMFCTRMask) == kMFCTRInstruction) err = err_cannot_override; } } } while( !err && !escapeIslandEngaged ); } #elif defined(__i386__) || defined(__x86_64__) // Atomically: // o If the reentry island was allocated: // o Insert the original instructions into the reentry island. // o Target the reentry island at the first non-replaced // instruction of the original function. // o Replace the original first instructions with the jump relative. // // Note that on i386, we do not support someone else changing the code under our feet if ( !err ) { if( reentryIsland ) err = setBranchIslandTarget_i386( reentryIsland, (void*) ((char *)originalFunctionPtr+eatenCount), originalInstructions ); if ( !err ) atomic_mov64((uint64_t *)originalFunctionPtr, jumpRelativeInstruction); } #endif // Clean up on error. if( err ) { if( reentryIsland ) freeBranchIsland( reentryIsland ); if( escapeIsland ) freeBranchIsland( escapeIsland ); } #if defined(__x86_64__) err = makeIslandExecutable(escapeIsland); err = makeIslandExecutable(reentryIsland); #endif return err; } /******************************************************************************* * * Implementation * *******************************************************************************/ #pragma mark - #pragma mark (Implementation) /***************************************************************************//** Implementation: Allocates memory for a branch island. @param island <- The allocated island. @param allocateHigh -> Whether to allocate the island at the end of the address space (for use with the branch absolute instruction). @result <- mach_error_t ***************************************************************************/ mach_error_t allocateBranchIsland( BranchIsland **island, int allocateHigh, void *originalFunctionAddress) { assert( island ); mach_error_t err = err_none; if( allocateHigh ) { vm_size_t pageSize; err = host_page_size( mach_host_self(), &pageSize ); if( !err ) { assert( sizeof( BranchIsland ) <= pageSize ); #if defined(__x86_64__) vm_address_t first = (uint64_t)originalFunctionAddress & ~(uint64_t)(((uint64_t)1 << 31) - 1) | ((uint64_t)1 << 31); // start in the middle of the page? vm_address_t last = 0x0; #else vm_address_t first = 0xfeffffff; vm_address_t last = 0xfe000000 + pageSize; #endif vm_address_t page = first; int allocated = 0; vm_map_t task_self = mach_task_self(); while( !err && !allocated && page != last ) { err = vm_allocate( task_self, &page, pageSize, 0 ); if( err == err_none ) allocated = 1; else if( err == KERN_NO_SPACE ) { #if defined(__x86_64__) page -= pageSize; #else page += pageSize; #endif err = err_none; } } if( allocated ) *island = (void*) page; else if( !allocated && !err ) err = KERN_NO_SPACE; } } else { void *block = malloc( sizeof( BranchIsland ) ); if( block ) *island = block; else err = KERN_NO_SPACE; } if( !err ) (**island).allocatedHigh = allocateHigh; return err; } /***************************************************************************//** Implementation: Deallocates memory for a branch island. @param island -> The island to deallocate. @result <- mach_error_t ***************************************************************************/ mach_error_t freeBranchIsland( BranchIsland *island ) { assert( island ); assert( (*(long*)&island->instructions[0]) == kIslandTemplate[0] ); assert( island->allocatedHigh ); mach_error_t err = err_none; if( island->allocatedHigh ) { vm_size_t pageSize; err = host_page_size( mach_host_self(), &pageSize ); if( !err ) { assert( sizeof( BranchIsland ) <= pageSize ); err = vm_deallocate( mach_task_self(), (vm_address_t) island, pageSize ); } } else { free( island ); } return err; } /***************************************************************************//** Implementation: Sets the branch island's target, with an optional instruction. @param island -> The branch island to insert target into. @param branchTo -> The address of the target. @param instruction -> Optional instruction to execute prior to branch. Set to zero for nop. @result <- mach_error_t ***************************************************************************/ #if defined(__ppc__) || defined(__POWERPC__) mach_error_t setBranchIslandTarget( BranchIsland *island, const void *branchTo, long instruction ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // Fill in the address. ((short*)island->instructions)[kAddressLo] = ((long) branchTo) & 0x0000FFFF; ((short*)island->instructions)[kAddressHi] = (((long) branchTo) >> 16) & 0x0000FFFF; // Fill in the (optional) instuction. if( instruction != 0 ) { ((short*)island->instructions)[kInstructionLo] = instruction & 0x0000FFFF; ((short*)island->instructions)[kInstructionHi] = (instruction >> 16) & 0x0000FFFF; } //MakeDataExecutable( island->instructions, sizeof( kIslandTemplate ) ); msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #endif #if defined(__i386__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // copy original instructions if (instructions) { bcopy (instructions, island->instructions + kInstructions, kOriginalInstructionsSize); } // Fill in the address. int32_t addressOffset = (char *)branchTo - (island->instructions + kJumpAddress + 4); *((int32_t *)(island->instructions + kJumpAddress)) = addressOffset; msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #elif defined(__x86_64__) mach_error_t setBranchIslandTarget_i386( BranchIsland *island, const void *branchTo, char* instructions ) { // Copy over the template code. bcopy( kIslandTemplate, island->instructions, sizeof( kIslandTemplate ) ); // Copy original instructions. if (instructions) { bcopy (instructions, island->instructions, kOriginalInstructionsSize); } // Fill in the address. *((uint64_t *)(island->instructions + kJumpAddress)) = (uint64_t)branchTo; msync( island->instructions, sizeof( kIslandTemplate ), MS_INVALIDATE ); return err_none; } #endif #if defined(__i386__) || defined(__x86_64__) // simplistic instruction matching typedef struct { unsigned int length; // max 15 unsigned char mask[15]; // sequence of bytes in memory order unsigned char constraint[15]; // sequence of bytes in memory order } AsmInstructionMatch; #if defined(__i386__) static AsmInstructionMatch possibleInstructions[] = { { 0x1, {0xFF}, {0x90} }, // nop { 0x1, {0xFF}, {0x55} }, // push %esp { 0x2, {0xFF, 0xFF}, {0x89, 0xE5} }, // mov %esp,%ebp { 0x1, {0xFF}, {0x53} }, // push %ebx { 0x3, {0xFF, 0xFF, 0x00}, {0x83, 0xEC, 0x00} }, // sub 0x??, %esp { 0x6, {0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00}, {0x81, 0xEC, 0x00, 0x00, 0x00, 0x00} }, // sub 0x??, %esp with 32bit immediate { 0x1, {0xFF}, {0x57} }, // push %edi { 0x1, {0xFF}, {0x56} }, // push %esi { 0x2, {0xFF, 0xFF}, {0x31, 0xC0} }, // xor %eax, %eax { 0x0 } }; #elif defined(__x86_64__) static AsmInstructionMatch possibleInstructions[] = { { 0x1, {0xFF}, {0x90} }, // nop { 0x1, {0xF8}, {0x50} }, // push %rX { 0x3, {0xFF, 0xFF, 0xFF}, {0x48, 0x89, 0xE5} }, // mov %rsp,%rbp { 0x4, {0xFF, 0xFF, 0xFF, 0x00}, {0x48, 0x83, 0xEC, 0x00} }, // sub 0x??, %rsp { 0x4, {0xFB, 0xFF, 0x00, 0x00}, {0x48, 0x89, 0x00, 0x00} }, // move onto rbp { 0x2, {0xFF, 0x00}, {0x41, 0x00} }, // push %rXX { 0x2, {0xFF, 0x00}, {0x85, 0x00} }, // test %rX,%rX { 0x0 } }; #endif static Boolean codeMatchesInstruction(unsigned char *code, AsmInstructionMatch* instruction) { Boolean match = true; size_t i; for (i=0; ilength; i++) { unsigned char mask = instruction->mask[i]; unsigned char constraint = instruction->constraint[i]; unsigned char codeValue = code[i]; match = ((codeValue & mask) == constraint); if (!match) break; } return match; } #if defined(__i386__) || defined(__x86_64__) static Boolean eatKnownInstructions( unsigned char *code, uint64_t* newInstruction, int* howManyEaten, char* originalInstructions ) { Boolean allInstructionsKnown = true; int totalEaten = 0; unsigned char* ptr = code; int remainsToEat = 5; // a JMP instruction takes 5 bytes if (howManyEaten) *howManyEaten = 0; while (remainsToEat > 0) { Boolean curInstructionKnown = false; // See if instruction matches one we know AsmInstructionMatch* curInstr = possibleInstructions; do { if ((curInstructionKnown = codeMatchesInstruction(ptr, curInstr))) break; curInstr++; } while (curInstr->length > 0); // if all instruction matches failed, we don't know current instruction then, stop here if (!curInstructionKnown) { allInstructionsKnown = false; break; } // At this point, we've matched curInstr int eaten = curInstr->length; ptr += eaten; remainsToEat -= eaten; totalEaten += eaten; } if (howManyEaten) *howManyEaten = totalEaten; if (originalInstructions) { Boolean enoughSpaceForOriginalInstructions = (totalEaten < kOriginalInstructionsSize); if (enoughSpaceForOriginalInstructions) { memset(originalInstructions, 0x90 /* NOP */, kOriginalInstructionsSize); // fill instructions with NOP bcopy(code, originalInstructions, totalEaten); } else { // printf ("Not enough space in island to store original instructions. Adapt the island definition and kOriginalInstructionsSize\n"); return false; } } if (allInstructionsKnown) { // save last 3 bytes of first 64bits of codre we'll replace uint64_t currentFirst64BitsOfCode = *((uint64_t *)code); currentFirst64BitsOfCode = OSSwapInt64(currentFirst64BitsOfCode); // back to memory representation currentFirst64BitsOfCode &= 0x0000000000FFFFFFLL; // keep only last 3 instructions bytes, first 5 will be replaced by JMP instr *newInstruction &= 0xFFFFFFFFFF000000LL; // clear last 3 bytes *newInstruction |= (currentFirst64BitsOfCode & 0x0000000000FFFFFFLL); // set last 3 bytes } return allInstructionsKnown; } #endif #if defined(__i386__) __asm( ".text;" ".align 2, 0x90;" "_atomic_mov64:;" " pushl %ebp;" " movl %esp, %ebp;" " pushl %esi;" " pushl %ebx;" " pushl %ecx;" " pushl %eax;" " pushl %edx;" // atomic push of value to an address // we use cmpxchg8b, which compares content of an address with // edx:eax. If they are equal, it atomically puts 64bit value // ecx:ebx in address. // We thus put contents of address in edx:eax to force ecx:ebx // in address " mov 8(%ebp), %esi;" // esi contains target address " mov 12(%ebp), %ebx;" " mov 16(%ebp), %ecx;" // ecx:ebx now contains value to put in target address " mov (%esi), %eax;" " mov 4(%esi), %edx;" // edx:eax now contains value currently contained in target address " lock; cmpxchg8b (%esi);" // atomic move. // restore registers " popl %edx;" " popl %eax;" " popl %ecx;" " popl %ebx;" " popl %esi;" " popl %ebp;" " ret" ); #elif defined(__x86_64__) void atomic_mov64( uint64_t *targetAddress, uint64_t value ) { *targetAddress = value; } #endif #endif