/* ** 2008 February 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an object that represents a fixed-length ** bitmap. Bits are numbered starting with 1. ** ** A bitmap is used to record what pages a database file have been ** journalled during a transaction. Usually only a few pages are ** journalled. So the bitmap is usually sparse and has low cardinality. ** But sometimes (for example when during a DROP of a large table) most ** or all of the pages get journalled. In those cases, the bitmap becomes ** dense. The algorithm needs to handle both cases well. ** ** The size of the bitmap is fixed when the object is created. ** ** All bits are clear when the bitmap is created. Individual bits ** may be set or cleared one at a time. ** ** Test operations are about 100 times more common that set operations. ** Clear operations are exceedingly rare. There are usually between ** 5 and 500 set operations per Bitvec object, though the number of sets can ** sometimes grow into tens of thousands or larger. The size of the ** Bitvec object is the number of pages in the database file at the ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. ** ** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $ */ #include "sqliteInt.h" #define BITVEC_SZ 512 /* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */ #define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*)) #define BITVEC_NCHAR BITVEC_USIZE #define BITVEC_NBIT (BITVEC_NCHAR*8) #define BITVEC_NINT (BITVEC_USIZE/4) #define BITVEC_MXHASH (BITVEC_NINT/2) #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) /* ** A bitmap is an instance of the following structure. ** ** This bitmap records the existance of zero or more bits ** with values between 1 and iSize, inclusive. ** ** There are three possible representations of the bitmap. ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight ** bitmap. The least significant bit is bit 1. ** ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is ** a hash table that will hold up to BITVEC_MXHASH distinct values. ** ** Otherwise, the value i is redirected into one of BITVEC_NPTR ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap ** handles up to iDivisor separate values of i. apSub[0] holds ** values between 1 and iDivisor. apSub[1] holds values between ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized ** to hold deal with values between 1 and iDivisor. */ struct Bitvec { u32 iSize; /* Maximum bit index */ u32 nSet; /* Number of bits that are set */ u32 iDivisor; /* Number of bits handled by each apSub[] entry */ union { u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ u32 aHash[BITVEC_NINT]; /* Hash table representation */ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ } u; }; /* ** Create a new bitmap object able to handle bits between 0 and iSize, ** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails. */ Bitvec *sqlite3BitvecCreate(u32 iSize){ Bitvec *p; assert( sizeof(*p)==BITVEC_SZ ); p = sqlite3MallocZero( sizeof(*p) ); if( p ){ p->iSize = iSize; } return p; } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ int sqlite3BitvecTest(Bitvec *p, u32 i){ if( p==0 ) return 0; if( i>p->iSize || i==0 ) return 0; if( p->iSize<=BITVEC_NBIT ){ i--; return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; } if( p->iDivisor>0 ){ u32 bin = (i-1)/p->iDivisor; i = (i-1)%p->iDivisor + 1; return sqlite3BitvecTest(p->u.apSub[bin], i); }else{ u32 h = BITVEC_HASH(i); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return 1; h++; if( h>=BITVEC_NINT ) h = 0; } return 0; } } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. */ int sqlite3BitvecSet(Bitvec *p, u32 i){ u32 h; assert( p!=0 ); assert( i>0 ); assert( i<=p->iSize ); if( p->iSize<=BITVEC_NBIT ){ i--; p->u.aBitmap[i/8] |= 1 << (i&7); return SQLITE_OK; } if( p->iDivisor ){ u32 bin = (i-1)/p->iDivisor; i = (i-1)%p->iDivisor + 1; if( p->u.apSub[bin]==0 ){ sqlite3BeginBenignMalloc(); p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); sqlite3EndBenignMalloc(); if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; } return sqlite3BitvecSet(p->u.apSub[bin], i); } h = BITVEC_HASH(i); while( p->u.aHash[h] ){ if( p->u.aHash[h]==i ) return SQLITE_OK; h++; if( h==BITVEC_NINT ) h = 0; } p->nSet++; if( p->nSet>=BITVEC_MXHASH ){ int j, rc; u32 aiValues[BITVEC_NINT]; memcpy(aiValues, p->u.aHash, sizeof(aiValues)); memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; rc = sqlite3BitvecSet(p, i); for(j=0; ju.aHash[h] = i; return SQLITE_OK; } /* ** Clear the i-th bit. Return 0 on success and an error code if ** anything goes wrong. */ void sqlite3BitvecClear(Bitvec *p, u32 i){ assert( p!=0 ); assert( i>0 ); if( p->iSize<=BITVEC_NBIT ){ i--; p->u.aBitmap[i/8] &= ~(1 << (i&7)); }else if( p->iDivisor ){ u32 bin = (i-1)/p->iDivisor; i = (i-1)%p->iDivisor + 1; if( p->u.apSub[bin] ){ sqlite3BitvecClear(p->u.apSub[bin], i); } }else{ int j; u32 aiValues[BITVEC_NINT]; memcpy(aiValues, p->u.aHash, sizeof(aiValues)); memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); p->nSet = 0; for(j=0; jiDivisor ){ int i; for(i=0; iu.apSub[i]); } } sqlite3_free(p); } #ifndef SQLITE_OMIT_BUILTIN_TEST /* ** Let V[] be an array of unsigned characters sufficient to hold ** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 /* ** This routine runs an extensive test of the Bitvec code. ** ** The input is an array of integers that acts as a program ** to test the Bitvec. The integers are opcodes followed ** by 0, 1, or 3 operands, depending on the opcode. Another ** opcode follows immediately after the last operand. ** ** There are 6 opcodes numbered from 0 through 5. 0 is the ** "halt" opcode and causes the test to end. ** ** 0 Halt and return the number of errors ** 1 N S X Set N bits beginning with S and incrementing by X ** 2 N S X Clear N bits beginning with S and incrementing by X ** 3 N Set N randomly chosen bits ** 4 N Clear N randomly chosen bits ** 5 N S X Set N bits from S increment X in array only, not in bitvec ** ** The opcodes 1 through 4 perform set and clear operations are performed ** on both a Bitvec object and on a linear array of bits obtained from malloc. ** Opcode 5 works on the linear array only, not on the Bitvec. ** Opcode 5 is used to deliberately induce a fault in order to ** confirm that error detection works. ** ** At the conclusion of the test the linear array is compared ** against the Bitvec object. If there are any differences, ** an error is returned. If they are the same, zero is returned. ** ** If a memory allocation error occurs, return -1. */ int sqlite3BitvecBuiltinTest(int sz, int *aOp){ Bitvec *pBitvec = 0; unsigned char *pV = 0; int rc = -1; int i, nx, pc, op; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3_malloc( (sz+7)/8 + 1 ); if( pBitvec==0 || pV==0 ) goto bitvec_end; memset(pV, 0, (sz+7)/8 + 1); /* Run the program */ pc = 0; while( (op = aOp[pc])!=0 ){ switch( op ){ case 1: case 2: case 5: { nx = 4; i = aOp[pc+2] - 1; aOp[pc+2] += aOp[pc+3]; break; } case 3: case 4: default: { nx = 2; sqlite3_randomness(sizeof(i), &i); break; } } if( (--aOp[pc+1]) > 0 ) nx = 0; pc += nx; i = (i & 0x7fffffff)%sz; if( (op & 1)!=0 ){ SETBIT(pV, (i+1)); if( op!=5 ){ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; } }else{ CLEARBIT(pV, (i+1)); sqlite3BitvecClear(pBitvec, i+1); } } /* Test to make sure the linear array exactly matches the ** Bitvec object. Start with the assumption that they do ** match (rc==0). Change rc to non-zero if a discrepancy ** is found. */ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + sqlite3BitvecTest(pBitvec, 0); for(i=1; i<=sz; i++){ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ rc = i; break; } } /* Free allocated structure */ bitvec_end: sqlite3_free(pV); sqlite3BitvecDestroy(pBitvec); return rc; } #endif /* SQLITE_OMIT_BUILTIN_TEST */