/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** ** @(#) $Id: parse.y,v 1.286 2009/08/10 03:57:58 shane Exp $ */ // All token codes are small integers with #defines that begin with "TK_" %token_prefix TK_ // The type of the data attached to each token is Token. This is also the // default type for non-terminals. // %token_type {Token} %default_type {Token} // The generated parser function takes a 4th argument as follows: %extra_argument {Parse *pParse} // This code runs whenever there is a syntax error // %syntax_error { UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); pParse->parseError = 1; } %stack_overflow { UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ sqlite3ErrorMsg(pParse, "parser stack overflow"); pParse->parseError = 1; } // The name of the generated procedure that implements the parser // is as follows: %name sqlite3Parser // The following text is included near the beginning of the C source // code file that implements the parser. // %include { #include "sqliteInt.h" /* ** Disable all error recovery processing in the parser push-down ** automaton. */ #define YYNOERRORRECOVERY 1 /* ** Make yytestcase() the same as testcase() */ #define yytestcase(X) testcase(X) /* ** An instance of this structure holds information about the ** LIMIT clause of a SELECT statement. */ struct LimitVal { Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ Expr *pOffset; /* The OFFSET expression. NULL if there is none */ }; /* ** An instance of this structure is used to store the LIKE, ** GLOB, NOT LIKE, and NOT GLOB operators. */ struct LikeOp { Token eOperator; /* "like" or "glob" or "regexp" */ int not; /* True if the NOT keyword is present */ }; /* ** An instance of the following structure describes the event of a ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, ** TK_DELETE, or TK_INSTEAD. If the event is of the form ** ** UPDATE ON (a,b,c) ** ** Then the "b" IdList records the list "a,b,c". */ struct TrigEvent { int a; IdList * b; }; /* ** An instance of this structure holds the ATTACH key and the key type. */ struct AttachKey { int type; Token key; }; } // end %include // Input is a single SQL command input ::= cmdlist. cmdlist ::= cmdlist ecmd. cmdlist ::= ecmd. ecmd ::= SEMI. ecmd ::= explain cmdx SEMI. explain ::= . { sqlite3BeginParse(pParse, 0); } %ifndef SQLITE_OMIT_EXPLAIN explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } %endif SQLITE_OMIT_EXPLAIN cmdx ::= cmd. { sqlite3FinishCoding(pParse); } ///////////////////// Begin and end transactions. //////////////////////////// // cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} trans_opt ::= . trans_opt ::= TRANSACTION. trans_opt ::= TRANSACTION nm. %type transtype {int} %ifdef SQLITE_TRANSACTION_DEFAULT_IMMEDIATE transtype(A) ::= . {A = TK_IMMEDIATE;} %endif SQLITE_TRANSACTION_DEFAULT_IMMEDIATE %ifndef SQLITE_TRANSACTION_DEFAULT_IMMEDIATE transtype(A) ::= . {A = TK_DEFERRED;} %endif SQLITE_TRANSACTION_DEFAULT_IMMEDIATE transtype(A) ::= DEFERRED(X). {A = @X;} transtype(A) ::= IMMEDIATE(X). {A = @X;} transtype(A) ::= EXCLUSIVE(X). {A = @X;} cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} savepoint_opt ::= SAVEPOINT. savepoint_opt ::= . cmd ::= SAVEPOINT nm(X). { sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); } cmd ::= RELEASE savepoint_opt nm(X). { sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); } cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); } ///////////////////// The CREATE TABLE statement //////////////////////////// // cmd ::= create_table create_table_args. create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); } createkw(A) ::= CREATE(X). { pParse->db->lookaside.bEnabled = 0; A = X; } %type ifnotexists {int} ifnotexists(A) ::= . {A = 0;} ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} %type temp {int} %ifndef SQLITE_OMIT_TEMPDB temp(A) ::= TEMP. {A = 1;} %endif SQLITE_OMIT_TEMPDB temp(A) ::= . {A = 0;} create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { sqlite3EndTable(pParse,&X,&Y,0); } create_table_args ::= AS select(S). { sqlite3EndTable(pParse,0,0,S); sqlite3SelectDelete(pParse->db, S); } columnlist ::= columnlist COMMA column. columnlist ::= column. // A "column" is a complete description of a single column in a // CREATE TABLE statement. This includes the column name, its // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, // NOT NULL and so forth. // column(A) ::= columnid(X) type carglist. { A.z = X.z; A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; } columnid(A) ::= nm(X). { sqlite3AddColumn(pParse,&X); A = X; } // An IDENTIFIER can be a generic identifier, or one of several // keywords. Any non-standard keyword can also be an identifier. // %type id {Token} id(A) ::= ID(X). {A = X;} id(A) ::= INDEXED(X). {A = X;} // The following directive causes tokens ABORT, AFTER, ASC, etc. to // fallback to ID if they will not parse as their original value. // This obviates the need for the "id" nonterminal. // %fallback ID ABORT AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH PLAN QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL %ifdef SQLITE_OMIT_COMPOUND_SELECT EXCEPT INTERSECT UNION %endif SQLITE_OMIT_COMPOUND_SELECT REINDEX RENAME CTIME_KW IF . %wildcard ANY. // Define operator precedence early so that this is the first occurance // of the operator tokens in the grammer. Keeping the operators together // causes them to be assigned integer values that are close together, // which keeps parser tables smaller. // // The token values assigned to these symbols is determined by the order // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See // the sqlite3ExprIfFalse() routine for additional information on this // constraint. // %left OR. %left AND. %right NOT. %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. %left GT LE LT GE. %right ESCAPE. %left BITAND BITOR LSHIFT RSHIFT. %left PLUS MINUS. %left STAR SLASH REM. %left CONCAT. %left COLLATE. %right UMINUS UPLUS BITNOT. // And "ids" is an identifer-or-string. // %type ids {Token} ids(A) ::= ID|STRING(X). {A = X;} // The name of a column or table can be any of the following: // %type nm {Token} nm(A) ::= id(X). {A = X;} nm(A) ::= STRING(X). {A = X;} nm(A) ::= JOIN_KW(X). {A = X;} // A typetoken is really one or more tokens that form a type name such // as can be found after the column name in a CREATE TABLE statement. // Multiple tokens are concatenated to form the value of the typetoken. // %type typetoken {Token} type ::= . type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} typetoken(A) ::= typename(X). {A = X;} typetoken(A) ::= typename(X) LP signed RP(Y). { A.z = X.z; A.n = (int)(&Y.z[Y.n] - X.z); } typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { A.z = X.z; A.n = (int)(&Y.z[Y.n] - X.z); } %type typename {Token} typename(A) ::= ids(X). {A = X;} typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} signed ::= plus_num. signed ::= minus_num. // "carglist" is a list of additional constraints that come after the // column name and column type in a CREATE TABLE statement. // carglist ::= carglist carg. carglist ::= . carg ::= CONSTRAINT nm ccons. carg ::= ccons. ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} ccons ::= DEFAULT MINUS(A) term(X). { ExprSpan v; v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); v.zStart = A.z; v.zEnd = X.zEnd; sqlite3AddDefaultValue(pParse,&v); } ccons ::= DEFAULT id(X). { ExprSpan v; spanExpr(&v, pParse, TK_STRING, &X); sqlite3AddDefaultValue(pParse,&v); } // In addition to the type name, we also care about the primary key and // UNIQUE constraints. // ccons ::= NULL onconf. ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} // The optional AUTOINCREMENT keyword %type autoinc {int} autoinc(X) ::= . {X = 0;} autoinc(X) ::= AUTOINCR. {X = 1;} // The next group of rules parses the arguments to a REFERENCES clause // that determine if the referential integrity checking is deferred or // or immediate and which determine what action to take if a ref-integ // check fails. // %type refargs {int} refargs(A) ::= . { A = OE_Restrict * 0x010101; } refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } %type refarg {struct {int value; int mask;}} refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; } %type refact {int} refact(A) ::= SET NULL. { A = OE_SetNull; } refact(A) ::= SET DEFAULT. { A = OE_SetDflt; } refact(A) ::= CASCADE. { A = OE_Cascade; } refact(A) ::= RESTRICT. { A = OE_Restrict; } %type defer_subclause {int} defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;} defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} %type init_deferred_pred_opt {int} init_deferred_pred_opt(A) ::= . {A = 0;} init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} // For the time being, the only constraint we care about is the primary // key and UNIQUE. Both create indices. // conslist_opt(A) ::= . {A.n = 0; A.z = 0;} conslist_opt(A) ::= COMMA(X) conslist. {A = X;} conslist ::= conslist COMMA tcons. conslist ::= conslist tcons. conslist ::= tcons. tcons ::= CONSTRAINT nm. tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). {sqlite3AddPrimaryKey(pParse,X,R,I,0);} tcons ::= UNIQUE LP idxlist(X) RP onconf(R). {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} tcons ::= CHECK LP expr(E) RP onconf. {sqlite3AddCheckConstraint(pParse,E.pExpr);} tcons ::= FOREIGN KEY LP idxlist(FA) RP REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { sqlite3CreateForeignKey(pParse, FA, &T, TA, R); sqlite3DeferForeignKey(pParse, D); } %type defer_subclause_opt {int} defer_subclause_opt(A) ::= . {A = 0;} defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} // The following is a non-standard extension that allows us to declare the // default behavior when there is a constraint conflict. // %type onconf {int} %type orconf {u8} %type resolvetype {int} onconf(A) ::= . {A = OE_Default;} onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} orconf(A) ::= . {A = OE_Default;} orconf(A) ::= OR resolvetype(X). {A = (u8)X;} resolvetype(A) ::= raisetype(X). {A = X;} resolvetype(A) ::= IGNORE. {A = OE_Ignore;} resolvetype(A) ::= REPLACE. {A = OE_Replace;} ////////////////////////// The DROP TABLE ///////////////////////////////////// // cmd ::= DROP TABLE ifexists(E) fullname(X). { sqlite3DropTable(pParse, X, 0, E); } %type ifexists {int} ifexists(A) ::= IF EXISTS. {A = 1;} ifexists(A) ::= . {A = 0;} ///////////////////// The CREATE VIEW statement ///////////////////////////// // %ifndef SQLITE_OMIT_VIEW cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); } cmd ::= DROP VIEW ifexists(E) fullname(X). { sqlite3DropTable(pParse, X, 1, E); } %endif SQLITE_OMIT_VIEW //////////////////////// The SELECT statement ///////////////////////////////// // cmd ::= select(X). { SelectDest dest = {SRT_Output, 0, 0, 0, 0}; sqlite3Select(pParse, X, &dest); sqlite3SelectDelete(pParse->db, X); } %type select {Select*} %destructor select {sqlite3SelectDelete(pParse->db, $$);} %type oneselect {Select*} %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} select(A) ::= oneselect(X). {A = X;} %ifndef SQLITE_OMIT_COMPOUND_SELECT select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { if( Z ){ Z->op = (u8)Y; Z->pPrior = X; }else{ sqlite3SelectDelete(pParse->db, X); } A = Z; } %type multiselect_op {int} multiselect_op(A) ::= UNION(OP). {A = @OP;} multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} %endif SQLITE_OMIT_COMPOUND_SELECT oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); } // The "distinct" nonterminal is true (1) if the DISTINCT keyword is // present and false (0) if it is not. // %type distinct {int} distinct(A) ::= DISTINCT. {A = 1;} distinct(A) ::= ALL. {A = 0;} distinct(A) ::= . {A = 0;} // selcollist is a list of expressions that are to become the return // values of the SELECT statement. The "*" in statements like // "SELECT * FROM ..." is encoded as a special expression with an // opcode of TK_ALL. // %type selcollist {ExprList*} %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} %type sclp {ExprList*} %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} sclp(A) ::= selcollist(X) COMMA. {A = X;} sclp(A) ::= . {A = 0;} selcollist(A) ::= sclp(P) expr(X) as(Y). { A = sqlite3ExprListAppend(pParse, P, X.pExpr); if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); sqlite3ExprListSetSpan(pParse,A,&X); } selcollist(A) ::= sclp(P) STAR. { Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); A = sqlite3ExprListAppend(pParse, P, p); } selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); A = sqlite3ExprListAppend(pParse,P, pDot); } // An option "AS " phrase that can follow one of the expressions that // define the result set, or one of the tables in the FROM clause. // %type as {Token} as(X) ::= AS nm(Y). {X = Y;} as(X) ::= ids(Y). {X = Y;} as(X) ::= . {X.n = 0;} %type seltablist {SrcList*} %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} %type stl_prefix {SrcList*} %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} %type from {SrcList*} %destructor from {sqlite3SrcListDelete(pParse->db, $$);} // A complete FROM clause. // from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} from(A) ::= FROM seltablist(X). { A = X; sqlite3SrcListShiftJoinType(A); } // "seltablist" is a "Select Table List" - the content of the FROM clause // in a SELECT statement. "stl_prefix" is a prefix of this list. // stl_prefix(A) ::= seltablist(X) joinop(Y). { A = X; if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; } stl_prefix(A) ::= . {A = 0;} seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); sqlite3SrcListIndexedBy(pParse, A, &I); } %ifndef SQLITE_OMIT_SUBQUERY seltablist(A) ::= stl_prefix(X) LP select(S) RP as(Z) on_opt(N) using_opt(U). { A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); } seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP as(Z) on_opt(N) using_opt(U). { if( X==0 && Z.n==0 && N==0 && U==0 ){ A = F; }else{ Select *pSubquery; sqlite3SrcListShiftJoinType(F); pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); } } // A seltablist_paren nonterminal represents anything in a FROM that // is contained inside parentheses. This can be either a subquery or // a grouping of table and subqueries. // // %type seltablist_paren {Select*} // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} // seltablist_paren(A) ::= select(S). {A = S;} // seltablist_paren(A) ::= seltablist(F). { // sqlite3SrcListShiftJoinType(F); // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); // } %endif SQLITE_OMIT_SUBQUERY %type dbnm {Token} dbnm(A) ::= . {A.z=0; A.n=0;} dbnm(A) ::= DOT nm(X). {A = X;} %type fullname {SrcList*} %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} %type joinop {int} %type joinop2 {int} joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. { X = sqlite3JoinType(pParse,&A,&B,&C); } %type on_opt {Expr*} %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} on_opt(N) ::= ON expr(E). {N = E.pExpr;} on_opt(N) ::= . {N = 0;} // Note that this block abuses the Token type just a little. If there is // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If // there is an INDEXED BY clause, then the token is populated as per normal, // with z pointing to the token data and n containing the number of bytes // in the token. // // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is // normally illegal. The sqlite3SrcListIndexedBy() function // recognizes and interprets this as a special case. // %type indexed_opt {Token} indexed_opt(A) ::= . {A.z=0; A.n=0;} indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} %type using_opt {IdList*} %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} using_opt(U) ::= . {U = 0;} %type orderby_opt {ExprList*} %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} %type sortlist {ExprList*} %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} %type sortitem {Expr*} %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} orderby_opt(A) ::= . {A = 0;} orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { A = sqlite3ExprListAppend(pParse,X,Y); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } sortlist(A) ::= sortitem(Y) sortorder(Z). { A = sqlite3ExprListAppend(pParse,0,Y); if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; } sortitem(A) ::= expr(X). {A = X.pExpr;} %type sortorder {int} sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} sortorder(A) ::= . {A = SQLITE_SO_ASC;} %type groupby_opt {ExprList*} %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} groupby_opt(A) ::= . {A = 0;} groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} %type having_opt {Expr*} %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} having_opt(A) ::= . {A = 0;} having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} %type limit_opt {struct LimitVal} // The destructor for limit_opt will never fire in the current grammar. // The limit_opt non-terminal only occurs at the end of a single production // rule for SELECT statements. As soon as the rule that create the // limit_opt non-terminal reduces, the SELECT statement rule will also // reduce. So there is never a limit_opt non-terminal on the stack // except as a transient. So there is never anything to destroy. // //%destructor limit_opt { // sqlite3ExprDelete(pParse->db, $$.pLimit); // sqlite3ExprDelete(pParse->db, $$.pOffset); //} limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} /////////////////////////// The DELETE statement ///////////////////////////// // %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) orderby_opt(O) limit_opt(L). { sqlite3SrcListIndexedBy(pParse, X, &I); W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); sqlite3DeleteFrom(pParse,X,W); } %endif %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3DeleteFrom(pParse,X,W); } %endif %type where_opt {Expr*} %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} where_opt(A) ::= . {A = 0;} where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} ////////////////////////// The UPDATE command //////////////////////////////// // %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3ExprListCheckLength(pParse,Y,"set list"); W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); sqlite3Update(pParse,X,Y,W,R); } %endif %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { sqlite3SrcListIndexedBy(pParse, X, &I); sqlite3ExprListCheckLength(pParse,Y,"set list"); sqlite3Update(pParse,X,Y,W,R); } %endif %type setlist {ExprList*} %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); sqlite3ExprListSetName(pParse, A, &X, 1); } setlist(A) ::= nm(X) EQ expr(Y). { A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); sqlite3ExprListSetName(pParse, A, &X, 1); } ////////////////////////// The INSERT command ///////////////////////////////// // cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. {sqlite3Insert(pParse, X, Y, 0, F, R);} cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). {sqlite3Insert(pParse, X, 0, S, F, R);} cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. {sqlite3Insert(pParse, X, 0, 0, F, R);} %type insert_cmd {u8} insert_cmd(A) ::= INSERT orconf(R). {A = R;} insert_cmd(A) ::= REPLACE. {A = OE_Replace;} %type itemlist {ExprList*} %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} itemlist(A) ::= expr(X). {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} %type inscollist_opt {IdList*} %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} %type inscollist {IdList*} %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} inscollist_opt(A) ::= . {A = 0;} inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} inscollist(A) ::= inscollist(X) COMMA nm(Y). {A = sqlite3IdListAppend(pParse->db,X,&Y);} inscollist(A) ::= nm(Y). {A = sqlite3IdListAppend(pParse->db,0,&Y);} /////////////////////////// Expression Processing ///////////////////////////// // %type expr {ExprSpan} %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} %type term {ExprSpan} %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} %include { /* This is a utility routine used to set the ExprSpan.zStart and ** ExprSpan.zEnd values of pOut so that the span covers the complete ** range of text beginning with pStart and going to the end of pEnd. */ static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ pOut->zStart = pStart->z; pOut->zEnd = &pEnd->z[pEnd->n]; } /* Construct a new Expr object from a single identifier. Use the ** new Expr to populate pOut. Set the span of pOut to be the identifier ** that created the expression. */ static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); pOut->zStart = pValue->z; pOut->zEnd = &pValue->z[pValue->n]; } } expr(A) ::= term(X). {A = X;} expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} expr(A) ::= nm(X) DOT nm(Y). { Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); spanSet(&A,&X,&Y); } expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); spanSet(&A,&X,&Z); } term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} expr(A) ::= REGISTER(X). { /* When doing a nested parse, one can include terms in an expression ** that look like this: #1 #2 ... These terms refer to registers ** in the virtual machine. #N is the N-th register. */ if( pParse->nested==0 ){ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); A.pExpr = 0; }else{ A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); } spanSet(&A, &X, &X); } expr(A) ::= VARIABLE(X). { spanExpr(&A, pParse, TK_VARIABLE, &X); sqlite3ExprAssignVarNumber(pParse, A.pExpr); spanSet(&A, &X, &X); } expr(A) ::= expr(E) COLLATE ids(C). { A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C); A.zStart = E.zStart; A.zEnd = &C.z[C.n]; } %ifndef SQLITE_OMIT_CAST expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); spanSet(&A,&X,&Y); } %endif SQLITE_OMIT_CAST expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); } A.pExpr = sqlite3ExprFunction(pParse, Y, &X); spanSet(&A,&X,&E); if( D && A.pExpr ){ A.pExpr->flags |= EP_Distinct; } } expr(A) ::= ID(X) LP STAR RP(E). { A.pExpr = sqlite3ExprFunction(pParse, 0, &X); spanSet(&A,&X,&E); } term(A) ::= CTIME_KW(OP). { /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are ** treated as functions that return constants */ A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); if( A.pExpr ){ A.pExpr->op = TK_CONST_FUNC; } spanSet(&A, &OP, &OP); } %include { /* This routine constructs a binary expression node out of two ExprSpan ** objects and uses the result to populate a new ExprSpan object. */ static void spanBinaryExpr( ExprSpan *pOut, /* Write the result here */ Parse *pParse, /* The parsing context. Errors accumulate here */ int op, /* The binary operation */ ExprSpan *pLeft, /* The left operand */ ExprSpan *pRight /* The right operand */ ){ pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); pOut->zStart = pLeft->zStart; pOut->zEnd = pRight->zEnd; } } expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} %type likeop {struct LikeOp} likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} %type escape {ExprSpan} %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);} escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;} escape(X) ::= . [ESCAPE] {memset(&X,0,sizeof(X));} expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] { ExprList *pList; pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); if( E.pExpr ){ pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); } A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); A.zStart = X.zStart; A.zEnd = Y.zEnd; if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; } %include { /* Construct an expression node for a unary postfix operator */ static void spanUnaryPostfix( ExprSpan *pOut, /* Write the new expression node here */ Parse *pParse, /* Parsing context to record errors */ int op, /* The operator */ ExprSpan *pOperand, /* The operand */ Token *pPostOp /* The operand token for setting the span */ ){ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); pOut->zStart = pOperand->zStart; pOut->zEnd = &pPostOp->z[pPostOp->n]; } } expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} expr(A) ::= expr(X) IS NULL(E). {spanUnaryPostfix(&A,pParse,TK_ISNULL,&X,&E);} expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} expr(A) ::= expr(X) IS NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} %include { /* Construct an expression node for a unary prefix operator */ static void spanUnaryPrefix( ExprSpan *pOut, /* Write the new expression node here */ Parse *pParse, /* Parsing context to record errors */ int op, /* The operator */ ExprSpan *pOperand, /* The operand */ Token *pPreOp /* The operand token for setting the span */ ){ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); pOut->zStart = pPreOp->z; pOut->zEnd = pOperand->zEnd; } } expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} expr(A) ::= MINUS(B) expr(X). [UMINUS] {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} expr(A) ::= PLUS(B) expr(X). [UPLUS] {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} %type between_op {int} between_op(A) ::= BETWEEN. {A = 0;} between_op(A) ::= NOT BETWEEN. {A = 1;} expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); if( A.pExpr ){ A.pExpr->x.pList = pList; }else{ sqlite3ExprListDelete(pParse->db, pList); } if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); A.zStart = W.zStart; A.zEnd = Y.zEnd; } %ifndef SQLITE_OMIT_SUBQUERY %type in_op {int} in_op(A) ::= IN. {A = 0;} in_op(A) ::= NOT IN. {A = 1;} expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); if( A.pExpr ){ A.pExpr->x.pList = Y; sqlite3ExprSetHeight(pParse, A.pExpr); }else{ sqlite3ExprListDelete(pParse->db, Y); } if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); A.zStart = X.zStart; A.zEnd = &E.z[E.n]; } expr(A) ::= LP(B) select(X) RP(E). { A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); if( A.pExpr ){ A.pExpr->x.pSelect = X; ExprSetProperty(A.pExpr, EP_xIsSelect); sqlite3ExprSetHeight(pParse, A.pExpr); }else{ sqlite3SelectDelete(pParse->db, X); } A.zStart = B.z; A.zEnd = &E.z[E.n]; } expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); if( A.pExpr ){ A.pExpr->x.pSelect = Y; ExprSetProperty(A.pExpr, EP_xIsSelect); sqlite3ExprSetHeight(pParse, A.pExpr); }else{ sqlite3SelectDelete(pParse->db, Y); } if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); A.zStart = X.zStart; A.zEnd = &E.z[E.n]; } expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); if( A.pExpr ){ A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); ExprSetProperty(A.pExpr, EP_xIsSelect); sqlite3ExprSetHeight(pParse, A.pExpr); }else{ sqlite3SrcListDelete(pParse->db, pSrc); } if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); A.zStart = X.zStart; A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; } expr(A) ::= EXISTS(B) LP select(Y) RP(E). { Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); if( p ){ p->x.pSelect = Y; ExprSetProperty(p, EP_xIsSelect); sqlite3ExprSetHeight(pParse, p); }else{ sqlite3SelectDelete(pParse->db, Y); } A.zStart = B.z; A.zEnd = &E.z[E.n]; } %endif SQLITE_OMIT_SUBQUERY /* CASE expressions */ expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); if( A.pExpr ){ A.pExpr->x.pList = Y; sqlite3ExprSetHeight(pParse, A.pExpr); }else{ sqlite3ExprListDelete(pParse->db, Y); } A.zStart = C.z; A.zEnd = &E.z[E.n]; } %type case_exprlist {ExprList*} %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { A = sqlite3ExprListAppend(pParse,X, Y.pExpr); A = sqlite3ExprListAppend(pParse,A, Z.pExpr); } case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { A = sqlite3ExprListAppend(pParse,0, Y.pExpr); A = sqlite3ExprListAppend(pParse,A, Z.pExpr); } %type case_else {Expr*} %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} case_else(A) ::= ELSE expr(X). {A = X.pExpr;} case_else(A) ::= . {A = 0;} %type case_operand {Expr*} %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} case_operand(A) ::= expr(X). {A = X.pExpr;} case_operand(A) ::= . {A = 0;} %type exprlist {ExprList*} %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} %type nexprlist {ExprList*} %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} exprlist(A) ::= nexprlist(X). {A = X;} exprlist(A) ::= . {A = 0;} nexprlist(A) ::= nexprlist(X) COMMA expr(Y). {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} nexprlist(A) ::= expr(Y). {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} ///////////////////////////// The CREATE INDEX command /////////////////////// // cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) ON nm(Y) LP idxlist(Z) RP(E). { sqlite3CreateIndex(pParse, &X, &D, sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, &S, &E, SQLITE_SO_ASC, NE); } %type uniqueflag {int} uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} uniqueflag(A) ::= . {A = OE_None;} %type idxlist {ExprList*} %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} %type idxlist_opt {ExprList*} %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} idxlist_opt(A) ::= . {A = 0;} idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { Expr *p = 0; if( C.n>0 ){ p = sqlite3Expr(pParse->db, TK_COLUMN, 0); sqlite3ExprSetColl(pParse, p, &C); } A = sqlite3ExprListAppend(pParse,X, p); sqlite3ExprListSetName(pParse,A,&Y,1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { Expr *p = 0; if( C.n>0 ){ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); sqlite3ExprSetColl(pParse, p, &C); } A = sqlite3ExprListAppend(pParse,0, p); sqlite3ExprListSetName(pParse, A, &Y, 1); sqlite3ExprListCheckLength(pParse, A, "index"); if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; } %type collate {Token} collate(C) ::= . {C.z = 0; C.n = 0;} collate(C) ::= COLLATE ids(X). {C = X;} ///////////////////////////// The DROP INDEX command ///////////////////////// // cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} ///////////////////////////// The VACUUM command ///////////////////////////// // %ifndef SQLITE_OMIT_VACUUM %ifndef SQLITE_OMIT_ATTACH cmd ::= VACUUM. {sqlite3Vacuum(pParse);} cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} %endif SQLITE_OMIT_ATTACH %endif SQLITE_OMIT_VACUUM ///////////////////////////// The PRAGMA command ///////////////////////////// // %ifndef SQLITE_OMIT_PRAGMA cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,1);} cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,1);} nmnum(A) ::= plus_num(X). {A = X;} nmnum(A) ::= nm(X). {A = X;} nmnum(A) ::= ON(X). {A = X;} nmnum(A) ::= DELETE(X). {A = X;} nmnum(A) ::= DEFAULT(X). {A = X;} %endif SQLITE_OMIT_PRAGMA plus_num(A) ::= plus_opt number(X). {A = X;} minus_num(A) ::= MINUS number(X). {A = X;} number(A) ::= INTEGER|FLOAT(X). {A = X;} plus_opt ::= PLUS. plus_opt ::= . //////////////////////////// The CREATE TRIGGER command ///////////////////// %ifndef SQLITE_OMIT_TRIGGER cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { Token all; all.z = A.z; all.n = (int)(Z.z - A.z) + Z.n; sqlite3FinishTrigger(pParse, S, &all); } trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) trigger_time(C) trigger_event(D) ON fullname(E) foreach_clause when_clause(G). { sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); A = (Z.n==0?B:Z); } %type trigger_time {int} trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } trigger_time(A) ::= AFTER. { A = TK_AFTER; } trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} trigger_time(A) ::= . { A = TK_BEFORE; } %type trigger_event {struct TrigEvent} %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} foreach_clause ::= . foreach_clause ::= FOR EACH ROW. %type when_clause {Expr*} %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} when_clause(A) ::= . { A = 0; } when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } %type trigger_cmd_list {TriggerStep*} %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { assert( Y!=0 ); Y->pLast->pNext = X; Y->pLast = X; A = Y; } trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { assert( X!=0 ); X->pLast = X; A = X; } // Disallow qualified table names on INSERT, UPDATE, and DELETE statements // within a trigger. The table to INSERT, UPDATE, or DELETE is always in // the same database as the table that the trigger fires on. // %type trnm {Token} trnm(A) ::= nm(X). {A = X;} trnm(A) ::= nm DOT nm(X). { A = X; sqlite3ErrorMsg(pParse, "qualified table names are not allowed on INSERT, UPDATE, and DELETE " "statements within triggers"); } // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE // statements within triggers. We make a specific error message for this // since it is an exception to the default grammar rules. // tridxby ::= . tridxby ::= INDEXED BY nm. { sqlite3ErrorMsg(pParse, "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " "within triggers"); } tridxby ::= NOT INDEXED. { sqlite3ErrorMsg(pParse, "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " "within triggers"); } %type trigger_cmd {TriggerStep*} %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} // UPDATE trigger_cmd(A) ::= UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } // INSERT trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} // DELETE trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} // SELECT trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } // The special RAISE expression that may occur in trigger programs expr(A) ::= RAISE(X) LP IGNORE RP(Y). { A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); if( A.pExpr ){ A.pExpr->affinity = OE_Ignore; } A.zStart = X.z; A.zEnd = &Y.z[Y.n]; } expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); if( A.pExpr ) { A.pExpr->affinity = (char)T; } A.zStart = X.z; A.zEnd = &Y.z[Y.n]; } %endif !SQLITE_OMIT_TRIGGER %type raisetype {int} raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} raisetype(A) ::= ABORT. {A = OE_Abort;} raisetype(A) ::= FAIL. {A = OE_Fail;} //////////////////////// DROP TRIGGER statement ////////////////////////////// %ifndef SQLITE_OMIT_TRIGGER cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { sqlite3DropTrigger(pParse,X,NOERR); } %endif !SQLITE_OMIT_TRIGGER //////////////////////// ATTACH DATABASE file AS name ///////////////////////// %ifndef SQLITE_OMIT_ATTACH cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { sqlite3Attach(pParse, F.pExpr, D.pExpr, K); } cmd ::= DETACH database_kw_opt expr(D). { sqlite3Detach(pParse, D.pExpr); } %type key_opt {Expr*} %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} key_opt(A) ::= . { A = 0; } key_opt(A) ::= KEY expr(X). { A = X.pExpr; } database_kw_opt ::= DATABASE. database_kw_opt ::= . %endif SQLITE_OMIT_ATTACH ////////////////////////// REINDEX collation ////////////////////////////////// %ifndef SQLITE_OMIT_REINDEX cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} %endif SQLITE_OMIT_REINDEX /////////////////////////////////// ANALYZE /////////////////////////////////// %ifndef SQLITE_OMIT_ANALYZE cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} %endif //////////////////////// ALTER TABLE table ... //////////////////////////////// %ifndef SQLITE_OMIT_ALTERTABLE cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { sqlite3AlterRenameTable(pParse,X,&Z); } cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { sqlite3AlterFinishAddColumn(pParse, &Y); } add_column_fullname ::= fullname(X). { pParse->db->lookaside.bEnabled = 0; sqlite3AlterBeginAddColumn(pParse, X); } kwcolumn_opt ::= . kwcolumn_opt ::= COLUMNKW. %endif SQLITE_OMIT_ALTERTABLE //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// %ifndef SQLITE_OMIT_VIRTUALTABLE cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { sqlite3VtabBeginParse(pParse, &X, &Y, &Z); } vtabarglist ::= vtabarg. vtabarglist ::= vtabarglist COMMA vtabarg. vtabarg ::= . {sqlite3VtabArgInit(pParse);} vtabarg ::= vtabarg vtabargtoken. vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} anylist ::= . anylist ::= anylist LP anylist RP. anylist ::= anylist ANY. %endif SQLITE_OMIT_VIRTUALTABLE