/* Copyright (c) 2006, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * --- * Author: Sanjay Ghemawat */ // Implementation of atomic operations for x86. This file should not // be included directly. Clients should instead include // "base/atomicops.h". #ifndef BASE_ATOMICOPS_INTERNALS_X86_H_ #define BASE_ATOMICOPS_INTERNALS_X86_H_ typedef int32_t Atomic32; #define BASE_HAS_ATOMIC64 1 // Use only in tests and base/atomic* // NOTE(vchen): x86 does not need to define AtomicWordCastType, because it // already matches Atomic32 or Atomic64, depending on the platform. // This struct is not part of the public API of this module; clients may not // use it. // Features of this x86. Values may not be correct before main() is run, // but are set conservatively. struct AtomicOps_x86CPUFeatureStruct { bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence // after acquire compare-and-swap. bool has_sse2; // Processor has SSE2. bool has_cmpxchg16b; // Processor supports cmpxchg16b instruction. }; extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures; #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory") namespace base { namespace subtle { typedef int64_t Atomic64; // 32-bit low-level operations on any platform. inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 prev; __asm__ __volatile__("lock; cmpxchgl %1,%2" : "=a" (prev) : "q" (new_value), "m" (*ptr), "0" (old_value) : "memory"); return prev; } inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value) { __asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg. : "=r" (new_value) : "m" (*ptr), "0" (new_value) : "memory"); return new_value; // Now it's the previous value. } inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { Atomic32 temp = increment; __asm__ __volatile__("lock; xaddl %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now holds the old value of *ptr return temp + increment; } inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment) { Atomic32 temp = increment; __asm__ __volatile__("lock; xaddl %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now holds the old value of *ptr if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return temp + increment; } inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return x; } inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value) { return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; } #if defined(__x86_64__) // 64-bit implementations of memory barrier can be simpler, because it // "mfence" is guaranteed to exist. inline void MemoryBarrier() { __asm__ __volatile__("mfence" : : : "memory"); } inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { *ptr = value; MemoryBarrier(); } #else inline void MemoryBarrier() { if (AtomicOps_Internalx86CPUFeatures.has_sse2) { __asm__ __volatile__("mfence" : : : "memory"); } else { // mfence is faster but not present on PIII Atomic32 x = 0; NoBarrier_AtomicExchange(&x, 0); // acts as a barrier on PIII } } inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { if (AtomicOps_Internalx86CPUFeatures.has_sse2) { *ptr = value; __asm__ __volatile__("mfence" : : : "memory"); } else { NoBarrier_AtomicExchange(ptr, value); // acts as a barrier on PIII } } #endif inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { ATOMICOPS_COMPILER_BARRIER(); *ptr = value; // An x86 store acts as a release barrier. // See comments in Atomic64 version of Release_Store(), below. } inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { Atomic32 value = *ptr; // An x86 load acts as a acquire barrier. // See comments in Atomic64 version of Release_Store(), below. ATOMICOPS_COMPILER_BARRIER(); return value; } inline Atomic32 Release_Load(volatile const Atomic32* ptr) { MemoryBarrier(); return *ptr; } #if defined(__x86_64__) // 64-bit low-level operations on 64-bit platform. inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 prev; __asm__ __volatile__("lock; cmpxchgq %1,%2" : "=a" (prev) : "q" (new_value), "m" (*ptr), "0" (old_value) : "memory"); return prev; } inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value) { __asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg. : "=r" (new_value) : "m" (*ptr), "0" (new_value) : "memory"); return new_value; // Now it's the previous value. } inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 temp = increment; __asm__ __volatile__("lock; xaddq %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now contains the previous value of *ptr return temp + increment; } inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 temp = increment; __asm__ __volatile__("lock; xaddq %0,%1" : "+r" (temp), "+m" (*ptr) : : "memory"); // temp now contains the previous value of *ptr if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return temp + increment; } inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; } inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { *ptr = value; MemoryBarrier(); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { ATOMICOPS_COMPILER_BARRIER(); *ptr = value; // An x86 store acts as a release barrier // for current AMD/Intel chips as of Jan 2008. // See also Acquire_Load(), below. // When new chips come out, check: // IA-32 Intel Architecture Software Developer's Manual, Volume 3: // System Programming Guide, Chatper 7: Multiple-processor management, // Section 7.2, Memory Ordering. // Last seen at: // http://developer.intel.com/design/pentium4/manuals/index_new.htm // // x86 stores/loads fail to act as barriers for a few instructions (clflush // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are // not generated by the compiler, and are rare. Users of these instructions // need to know about cache behaviour in any case since all of these involve // either flushing cache lines or non-temporal cache hints. } inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { return *ptr; } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { Atomic64 value = *ptr; // An x86 load acts as a acquire barrier, // for current AMD/Intel chips as of Jan 2008. // See also Release_Store(), above. ATOMICOPS_COMPILER_BARRIER(); return value; } inline Atomic64 Release_Load(volatile const Atomic64* ptr) { MemoryBarrier(); return *ptr; } #else // defined(__x86_64__) // 64-bit low-level operations on 32-bit platform. #if !((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) // For compilers older than gcc 4.1, we use inline asm. // // Potential pitfalls: // // 1. %ebx points to Global offset table (GOT) with -fPIC. // We need to preserve this register. // 2. When explicit registers are used in inline asm, the // compiler may not be aware of it and might try to reuse // the same register for another argument which has constraints // that allow it ("r" for example). inline Atomic64 __sync_val_compare_and_swap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 prev; __asm__ __volatile__("push %%ebx\n\t" "movl (%3), %%ebx\n\t" // Move 64-bit new_value into "movl 4(%3), %%ecx\n\t" // ecx:ebx "lock; cmpxchg8b (%1)\n\t"// If edx:eax (old_value) same "pop %%ebx\n\t" : "=A" (prev) // as contents of ptr: : "D" (ptr), // ecx:ebx => ptr "0" (old_value), // else: "S" (&new_value) // old *ptr => edx:eax : "memory", "%ecx"); return prev; } #endif // Compiler < gcc-4.1 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_val, Atomic64 new_val) { return __sync_val_compare_and_swap(ptr, old_val, new_val); } inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_val) { Atomic64 old_val; do { old_val = *ptr; } while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val); return old_val; } inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 old_val, new_val; do { old_val = *ptr; new_val = old_val + increment; } while (__sync_val_compare_and_swap(ptr, old_val, new_val) != old_val); return old_val + increment; } inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment) { Atomic64 new_val = NoBarrier_AtomicIncrement(ptr, increment); if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return new_val; } inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) { __asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic "movq %%mm0, %0\n\t" // moves (ptr could be read-only) "emms\n\t" // Empty mmx state/Reset FP regs : "=m" (*ptr) : "m" (value) : // mark the FP stack and mmx registers as clobbered "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)", "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"); } inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) { NoBarrier_Store(ptr, value); MemoryBarrier(); } inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) { ATOMICOPS_COMPILER_BARRIER(); NoBarrier_Store(ptr, value); } inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) { Atomic64 value; __asm__ __volatile__("movq %1, %%mm0\n\t" // Use mmx reg for 64-bit atomic "movq %%mm0, %0\n\t" // moves (ptr could be read-only) "emms\n\t" // Empty mmx state/Reset FP regs : "=m" (value) : "m" (*ptr) : // mark the FP stack and mmx registers as clobbered "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)", "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"); return value; } inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) { Atomic64 value = NoBarrier_Load(ptr); ATOMICOPS_COMPILER_BARRIER(); return value; } inline Atomic64 Release_Load(volatile const Atomic64* ptr) { MemoryBarrier(); return NoBarrier_Load(ptr); } #endif // defined(__x86_64__) inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value); if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) { __asm__ __volatile__("lfence" : : : "memory"); } return x; } inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value) { return NoBarrier_CompareAndSwap(ptr, old_value, new_value); } } // namespace base::subtle } // namespace base #undef ATOMICOPS_COMPILER_BARRIER #endif // BASE_ATOMICOPS_INTERNALS_X86_H_