// Copyright (c) 2009, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Sanjay Ghemawat // Nabeel Mian // // Implements management of profile timers and the corresponding signal handler. #include "config.h" #include "profile-handler.h" #if !(defined(__CYGWIN__) || defined(__CYGWIN32__)) #include #include #include #include #include #include "base/dynamic_annotations.h" #include "base/googleinit.h" #include "base/logging.h" #include "base/spinlock.h" #include "maybe_threads.h" using std::list; using std::string; // This structure is used by ProfileHandlerRegisterCallback and // ProfileHandlerUnregisterCallback as a handle to a registered callback. struct ProfileHandlerToken { // Sets the callback and associated arg. ProfileHandlerToken(ProfileHandlerCallback cb, void* cb_arg) : callback(cb), callback_arg(cb_arg) { } // Callback function to be invoked on receiving a profile timer interrupt. ProfileHandlerCallback callback; // Argument for the callback function. void* callback_arg; }; // This class manages profile timers and associated signal handler. This is a // a singleton. class ProfileHandler { public: // Registers the current thread with the profile handler. On systems which // have a separate interval timer for each thread, this function starts the // timer for the current thread. // // The function also attempts to determine whether or not timers are shared by // all threads in the process. (With LinuxThreads, and with NPTL on some // Linux kernel versions, each thread has separate timers.) // // Prior to determining whether timers are shared, this function will // unconditionally start the timer. However, if this function determines // that timers are shared, then it will stop the timer if no callbacks are // currently registered. void RegisterThread(); // Registers a callback routine to receive profile timer ticks. The returned // token is to be used when unregistering this callback and must not be // deleted by the caller. Registration of the first callback enables the // SIGPROF handler (or SIGALRM if using ITIMER_REAL). ProfileHandlerToken* RegisterCallback(ProfileHandlerCallback callback, void* callback_arg); // Unregisters a previously registered callback. Expects the token returned // by the corresponding RegisterCallback routine. Unregistering the last // callback disables the SIGPROF handler (or SIGALRM if using ITIMER_REAL). void UnregisterCallback(ProfileHandlerToken* token) NO_THREAD_SAFETY_ANALYSIS; // Unregisters all the callbacks, stops the timer if shared, disables the // SIGPROF (or SIGALRM) handler and clears the timer_sharing_ state. void Reset(); // Gets the current state of profile handler. void GetState(ProfileHandlerState* state); // Initializes and returns the ProfileHandler singleton. static ProfileHandler* Instance(); private: ProfileHandler(); ~ProfileHandler(); // Largest allowed frequency. static const int32 kMaxFrequency = 4000; // Default frequency. static const int32 kDefaultFrequency = 100; // ProfileHandler singleton. static ProfileHandler* instance_; // pthread_once_t for one time initialization of ProfileHandler singleton. static pthread_once_t once_; // Initializes the ProfileHandler singleton via GoogleOnceInit. static void Init(); // The number of SIGPROF (or SIGALRM for ITIMER_REAL) interrupts received. int64 interrupts_ GUARDED_BY(signal_lock_); // SIGPROF/SIGALRM interrupt frequency, read-only after construction. int32 frequency_; // ITIMER_PROF (which uses SIGPROF), or ITIMER_REAL (which uses SIGALRM) int timer_type_; // Counts the number of callbacks registered. int32 callback_count_ GUARDED_BY(control_lock_); // Is profiling allowed at all? bool allowed_; // Whether or not the threading system provides interval timers that are // shared by all threads in a process. enum { // No timer initialization attempted yet. TIMERS_UNTOUCHED, // First thread has registered and set timer. TIMERS_ONE_SET, // Timers are shared by all threads. TIMERS_SHARED, // Timers are separate in each thread. TIMERS_SEPARATE } timer_sharing_ GUARDED_BY(control_lock_); // This lock serializes the registration of threads and protects the // callbacks_ list below. // Locking order: // In the context of a signal handler, acquire signal_lock_ to walk the // callback list. Otherwise, acquire control_lock_, disable the signal // handler and then acquire signal_lock_. SpinLock control_lock_ ACQUIRED_BEFORE(signal_lock_); SpinLock signal_lock_; // Holds the list of registered callbacks. We expect the list to be pretty // small. Currently, the cpu profiler (base/profiler) and thread module // (base/thread.h) are the only two components registering callbacks. // Following are the locking requirements for callbacks_: // For read-write access outside the SIGPROF handler: // - Acquire control_lock_ // - Disable SIGPROF handler. // - Acquire signal_lock_ // For read-only access in the context of SIGPROF handler // (Read-write access is *not allowed* in the SIGPROF handler) // - Acquire signal_lock_ // For read-only access outside SIGPROF handler: // - Acquire control_lock_ typedef list CallbackList; typedef CallbackList::iterator CallbackIterator; CallbackList callbacks_ GUARDED_BY(signal_lock_); // Starts the interval timer. If the thread library shares timers between // threads, this function starts the shared timer. Otherwise, this will start // the timer in the current thread. void StartTimer() EXCLUSIVE_LOCKS_REQUIRED(control_lock_); // Stops the interval timer. If the thread library shares timers between // threads, this fucntion stops the shared timer. Otherwise, this will stop // the timer in the current thread. void StopTimer() EXCLUSIVE_LOCKS_REQUIRED(control_lock_); // Returns true if the profile interval timer is enabled in the current // thread. This actually checks the kernel's interval timer setting. (It is // used to detect whether timers are shared or separate.) bool IsTimerRunning() EXCLUSIVE_LOCKS_REQUIRED(control_lock_); // Sets the timer interrupt signal handler. void EnableHandler() EXCLUSIVE_LOCKS_REQUIRED(control_lock_); // Disables (ignores) the timer interrupt signal. void DisableHandler() EXCLUSIVE_LOCKS_REQUIRED(control_lock_); // Returns true if the handler is not being used by something else. // This checks the kernel's signal handler table. bool IsSignalHandlerAvailable(); // SIGPROF/SIGALRM handler. Iterate over and call all the registered callbacks. static void SignalHandler(int sig, siginfo_t* sinfo, void* ucontext); DISALLOW_COPY_AND_ASSIGN(ProfileHandler); }; ProfileHandler* ProfileHandler::instance_ = NULL; pthread_once_t ProfileHandler::once_ = PTHREAD_ONCE_INIT; const int32 ProfileHandler::kMaxFrequency; const int32 ProfileHandler::kDefaultFrequency; // If we are LD_PRELOAD-ed against a non-pthreads app, then // pthread_once won't be defined. We declare it here, for that // case (with weak linkage) which will cause the non-definition to // resolve to NULL. We can then check for NULL or not in Instance. extern "C" int pthread_once(pthread_once_t *, void (*)(void)) ATTRIBUTE_WEAK; void ProfileHandler::Init() { instance_ = new ProfileHandler(); } ProfileHandler* ProfileHandler::Instance() { if (pthread_once) { pthread_once(&once_, Init); } if (instance_ == NULL) { // This will be true on systems that don't link in pthreads, // including on FreeBSD where pthread_once has a non-zero address // (but doesn't do anything) even when pthreads isn't linked in. Init(); assert(instance_ != NULL); } return instance_; } ProfileHandler::ProfileHandler() : interrupts_(0), callback_count_(0), allowed_(true), timer_sharing_(TIMERS_UNTOUCHED) { SpinLockHolder cl(&control_lock_); timer_type_ = (getenv("CPUPROFILE_REALTIME") ? ITIMER_REAL : ITIMER_PROF); // Get frequency of interrupts (if specified) char junk; const char* fr = getenv("CPUPROFILE_FREQUENCY"); if (fr != NULL && (sscanf(fr, "%u%c", &frequency_, &junk) == 1) && (frequency_ > 0)) { // Limit to kMaxFrequency frequency_ = (frequency_ > kMaxFrequency) ? kMaxFrequency : frequency_; } else { frequency_ = kDefaultFrequency; } if (!allowed_) { return; } // If something else is using the signal handler, // assume it has priority over us and stop. if (!IsSignalHandlerAvailable()) { RAW_LOG(INFO, "Disabling profiler because %s handler is already in use.", timer_type_ == ITIMER_REAL ? "SIGALRM" : "SIGPROF"); allowed_ = false; return; } // Ignore signals until we decide to turn profiling on. (Paranoia; // should already be ignored.) DisableHandler(); } ProfileHandler::~ProfileHandler() { Reset(); } void ProfileHandler::RegisterThread() { SpinLockHolder cl(&control_lock_); if (!allowed_) { return; } // We try to detect whether timers are being shared by setting a // timer in the first call to this function, then checking whether // it's set in the second call. // // Note that this detection method requires that the first two calls // to RegisterThread must be made from different threads. (Subsequent // calls will see timer_sharing_ set to either TIMERS_SEPARATE or // TIMERS_SHARED, and won't try to detect the timer sharing type.) // // Also note that if timer settings were inherited across new thread // creation but *not* shared, this approach wouldn't work. That's // not an issue for any Linux threading implementation, and should // not be a problem for a POSIX-compliant threads implementation. switch (timer_sharing_) { case TIMERS_UNTOUCHED: StartTimer(); timer_sharing_ = TIMERS_ONE_SET; break; case TIMERS_ONE_SET: // If the timer is running, that means that the main thread's // timer setup is seen in this (second) thread -- and therefore // that timers are shared. if (IsTimerRunning()) { timer_sharing_ = TIMERS_SHARED; // If callback is already registered, we have to keep the timer // running. If not, we disable the timer here. if (callback_count_ == 0) { StopTimer(); } } else { timer_sharing_ = TIMERS_SEPARATE; StartTimer(); } break; case TIMERS_SHARED: // Nothing needed. break; case TIMERS_SEPARATE: StartTimer(); break; } } ProfileHandlerToken* ProfileHandler::RegisterCallback( ProfileHandlerCallback callback, void* callback_arg) { ProfileHandlerToken* token = new ProfileHandlerToken(callback, callback_arg); SpinLockHolder cl(&control_lock_); DisableHandler(); { SpinLockHolder sl(&signal_lock_); callbacks_.push_back(token); } // Start the timer if timer is shared and this is a first callback. if ((callback_count_ == 0) && (timer_sharing_ == TIMERS_SHARED)) { StartTimer(); } ++callback_count_; EnableHandler(); return token; } void ProfileHandler::UnregisterCallback(ProfileHandlerToken* token) { SpinLockHolder cl(&control_lock_); for (CallbackIterator it = callbacks_.begin(); it != callbacks_.end(); ++it) { if ((*it) == token) { RAW_CHECK(callback_count_ > 0, "Invalid callback count"); DisableHandler(); { SpinLockHolder sl(&signal_lock_); delete *it; callbacks_.erase(it); } --callback_count_; if (callback_count_ > 0) { EnableHandler(); } else if (timer_sharing_ == TIMERS_SHARED) { StopTimer(); } return; } } // Unknown token. RAW_LOG(FATAL, "Invalid token"); } void ProfileHandler::Reset() { SpinLockHolder cl(&control_lock_); DisableHandler(); { SpinLockHolder sl(&signal_lock_); CallbackIterator it = callbacks_.begin(); while (it != callbacks_.end()) { CallbackIterator tmp = it; ++it; delete *tmp; callbacks_.erase(tmp); } } callback_count_ = 0; if (timer_sharing_ == TIMERS_SHARED) { StopTimer(); } timer_sharing_ = TIMERS_UNTOUCHED; } void ProfileHandler::GetState(ProfileHandlerState* state) { SpinLockHolder cl(&control_lock_); DisableHandler(); { SpinLockHolder sl(&signal_lock_); // Protects interrupts_. state->interrupts = interrupts_; } if (callback_count_ > 0) { EnableHandler(); } state->frequency = frequency_; state->callback_count = callback_count_; state->allowed = allowed_; } void ProfileHandler::StartTimer() { if (!allowed_) { return; } struct itimerval timer; timer.it_interval.tv_sec = 0; timer.it_interval.tv_usec = 1000000 / frequency_; timer.it_value = timer.it_interval; setitimer(timer_type_, &timer, 0); } void ProfileHandler::StopTimer() { if (!allowed_) { return; } struct itimerval timer; memset(&timer, 0, sizeof timer); setitimer(timer_type_, &timer, 0); } bool ProfileHandler::IsTimerRunning() { if (!allowed_) { return false; } struct itimerval current_timer; RAW_CHECK(0 == getitimer(timer_type_, ¤t_timer), "getitimer"); return (current_timer.it_value.tv_sec != 0 || current_timer.it_value.tv_usec != 0); } void ProfileHandler::EnableHandler() { if (!allowed_) { return; } struct sigaction sa; sa.sa_sigaction = SignalHandler; sa.sa_flags = SA_RESTART | SA_SIGINFO; sigemptyset(&sa.sa_mask); const int signal_number = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM); RAW_CHECK(sigaction(signal_number, &sa, NULL) == 0, "sigprof (enable)"); } void ProfileHandler::DisableHandler() { if (!allowed_) { return; } struct sigaction sa; sa.sa_handler = SIG_IGN; sa.sa_flags = SA_RESTART; sigemptyset(&sa.sa_mask); const int signal_number = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM); RAW_CHECK(sigaction(signal_number, &sa, NULL) == 0, "sigprof (disable)"); } bool ProfileHandler::IsSignalHandlerAvailable() { struct sigaction sa; const int signal_number = (timer_type_ == ITIMER_PROF ? SIGPROF : SIGALRM); RAW_CHECK(sigaction(signal_number, NULL, &sa) == 0, "is-signal-handler avail"); // We only take over the handler if the current one is unset. // It must be SIG_IGN or SIG_DFL, not some other function. // SIG_IGN must be allowed because when profiling is allowed but // not actively in use, this code keeps the handler set to SIG_IGN. // That setting will be inherited across fork+exec. In order for // any child to be able to use profiling, SIG_IGN must be treated // as available. return sa.sa_handler == SIG_IGN || sa.sa_handler == SIG_DFL; } void ProfileHandler::SignalHandler(int sig, siginfo_t* sinfo, void* ucontext) { int saved_errno = errno; // At this moment, instance_ must be initialized because the handler is // enabled in RegisterThread or RegisterCallback only after // ProfileHandler::Instance runs. ProfileHandler* instance = ANNOTATE_UNPROTECTED_READ(instance_); RAW_CHECK(instance != NULL, "ProfileHandler is not initialized"); { SpinLockHolder sl(&instance->signal_lock_); ++instance->interrupts_; for (CallbackIterator it = instance->callbacks_.begin(); it != instance->callbacks_.end(); ++it) { (*it)->callback(sig, sinfo, ucontext, (*it)->callback_arg); } } errno = saved_errno; } // This module initializer registers the main thread, so it must be // executed in the context of the main thread. REGISTER_MODULE_INITIALIZER(profile_main, ProfileHandlerRegisterThread()); extern "C" void ProfileHandlerRegisterThread() { ProfileHandler::Instance()->RegisterThread(); } extern "C" ProfileHandlerToken* ProfileHandlerRegisterCallback( ProfileHandlerCallback callback, void* callback_arg) { return ProfileHandler::Instance()->RegisterCallback(callback, callback_arg); } extern "C" void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) { ProfileHandler::Instance()->UnregisterCallback(token); } extern "C" void ProfileHandlerReset() { return ProfileHandler::Instance()->Reset(); } extern "C" void ProfileHandlerGetState(ProfileHandlerState* state) { ProfileHandler::Instance()->GetState(state); } #else // OS_CYGWIN // ITIMER_PROF doesn't work under cygwin. ITIMER_REAL is available, but doesn't // work as well for profiling, and also interferes with alarm(). Because of // these issues, unless a specific need is identified, profiler support is // disabled under Cygwin. extern "C" void ProfileHandlerRegisterThread() { } extern "C" ProfileHandlerToken* ProfileHandlerRegisterCallback( ProfileHandlerCallback callback, void* callback_arg) { return NULL; } extern "C" void ProfileHandlerUnregisterCallback(ProfileHandlerToken* token) { } extern "C" void ProfileHandlerReset() { } extern "C" void ProfileHandlerGetState(ProfileHandlerState* state) { } #endif // OS_CYGWIN