// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "tools/gn/exec_process.h" #include #include "base/command_line.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/process/kill.h" #include "base/process/launch.h" #include "base/process/process.h" #include "build/build_config.h" #if defined(OS_WIN) #include #include "base/win/scoped_handle.h" #include "base/win/scoped_process_information.h" #else #include #include #include #include "base/posix/eintr_wrapper.h" #include "base/posix/file_descriptor_shuffle.h" #endif namespace internal { #if defined(OS_WIN) bool ExecProcess(const base::CommandLine& cmdline, const base::FilePath& startup_dir, std::string* std_out, std::string* std_err, int* exit_code) { SECURITY_ATTRIBUTES sa_attr; // Set the bInheritHandle flag so pipe handles are inherited. sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES); sa_attr.bInheritHandle = TRUE; sa_attr.lpSecurityDescriptor = nullptr; // Create the pipe for the child process's STDOUT. HANDLE out_read = nullptr; HANDLE out_write = nullptr; if (!CreatePipe(&out_read, &out_write, &sa_attr, 0)) { NOTREACHED() << "Failed to create pipe"; return false; } base::win::ScopedHandle scoped_out_read(out_read); base::win::ScopedHandle scoped_out_write(out_write); // Create the pipe for the child process's STDERR. HANDLE err_read = nullptr; HANDLE err_write = nullptr; if (!CreatePipe(&err_read, &err_write, &sa_attr, 0)) { NOTREACHED() << "Failed to create pipe"; return false; } base::win::ScopedHandle scoped_err_read(err_read); base::win::ScopedHandle scoped_err_write(err_write); // Ensure the read handle to the pipe for STDOUT/STDERR is not inherited. if (!SetHandleInformation(out_read, HANDLE_FLAG_INHERIT, 0)) { NOTREACHED() << "Failed to disabled pipe inheritance"; return false; } if (!SetHandleInformation(err_read, HANDLE_FLAG_INHERIT, 0)) { NOTREACHED() << "Failed to disabled pipe inheritance"; return false; } base::FilePath::StringType cmdline_str(cmdline.GetCommandLineString()); STARTUPINFO start_info = {}; start_info.cb = sizeof(STARTUPINFO); start_info.hStdOutput = out_write; // Keep the normal stdin. start_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE); // FIXME(brettw) set stderr here when we actually read it below. //start_info.hStdError = err_write; start_info.hStdError = GetStdHandle(STD_ERROR_HANDLE); start_info.dwFlags |= STARTF_USESTDHANDLES; // Create the child process. PROCESS_INFORMATION temp_process_info = {}; if (!CreateProcess(nullptr, &cmdline_str[0], nullptr, nullptr, TRUE, // Handles are inherited. 0, nullptr, startup_dir.value().c_str(), &start_info, &temp_process_info)) { return false; } base::win::ScopedProcessInformation proc_info(temp_process_info); // Close our writing end of pipes now. Otherwise later read would not be able // to detect end of child's output. scoped_out_write.Close(); scoped_err_write.Close(); // Read output from the child process's pipe for STDOUT const int kBufferSize = 1024; char buffer[kBufferSize]; // FIXME(brettw) read from stderr here! This is complicated because we want // to read both of them at the same time, probably need overlapped I/O. // Also uncomment start_info code above. for (;;) { DWORD bytes_read = 0; BOOL success = ReadFile(out_read, buffer, kBufferSize, &bytes_read, nullptr); if (!success || bytes_read == 0) break; std_out->append(buffer, bytes_read); } // Let's wait for the process to finish. WaitForSingleObject(proc_info.process_handle(), INFINITE); DWORD dw_exit_code; GetExitCodeProcess(proc_info.process_handle(), &dw_exit_code); *exit_code = static_cast(dw_exit_code); return true; } #else // Reads from the provided file descriptor and appends to output. Returns false // if the fd is closed or there is an unexpected error (not // EINTR/EAGAIN/EWOULDBLOCK). bool ReadFromPipe(int fd, std::string* output) { char buffer[256]; int bytes_read = HANDLE_EINTR(read(fd, buffer, sizeof(buffer))); if (bytes_read == -1) { return errno == EAGAIN || errno == EWOULDBLOCK; } else if (bytes_read <= 0) { return false; } output->append(buffer, bytes_read); return true; } bool ExecProcess(const base::CommandLine& cmdline, const base::FilePath& startup_dir, std::string* std_out, std::string* std_err, int* exit_code) { *exit_code = EXIT_FAILURE; std::vector argv = cmdline.argv(); int out_fd[2], err_fd[2]; pid_t pid; base::InjectiveMultimap fd_shuffle1, fd_shuffle2; scoped_ptr argv_cstr(new char*[argv.size() + 1]); fd_shuffle1.reserve(3); fd_shuffle2.reserve(3); if (pipe(out_fd) < 0) return false; base::ScopedFD out_read(out_fd[0]), out_write(out_fd[1]); if (pipe(err_fd) < 0) return false; base::ScopedFD err_read(err_fd[0]), err_write(err_fd[1]); if (out_read.get() >= FD_SETSIZE || err_read.get() >= FD_SETSIZE) return false; switch (pid = fork()) { case -1: // error return false; case 0: // child { // DANGER: no calls to malloc are allowed from now on: // http://crbug.com/36678 // // STL iterators are also not allowed (including those implied // by range-based for loops), since debug iterators use locks. // Obscure fork() rule: in the child, if you don't end up doing exec*(), // you call _exit() instead of exit(). This is because _exit() does not // call any previously-registered (in the parent) exit handlers, which // might do things like block waiting for threads that don't even exist // in the child. int dev_null = open("/dev/null", O_WRONLY); if (dev_null < 0) _exit(127); fd_shuffle1.push_back( base::InjectionArc(out_write.get(), STDOUT_FILENO, true)); fd_shuffle1.push_back( base::InjectionArc(err_write.get(), STDERR_FILENO, true)); fd_shuffle1.push_back( base::InjectionArc(dev_null, STDIN_FILENO, true)); // Adding another element here? Remeber to increase the argument to // reserve(), above. // DANGER: Do NOT convert to range-based for loop! for (size_t i = 0; i < fd_shuffle1.size(); ++i) fd_shuffle2.push_back(fd_shuffle1[i]); if (!ShuffleFileDescriptors(&fd_shuffle1)) _exit(127); base::SetCurrentDirectory(startup_dir); // TODO(brettw) the base version GetAppOutput does a // CloseSuperfluousFds call here. Do we need this? // DANGER: Do NOT convert to range-based for loop! for (size_t i = 0; i < argv.size(); i++) argv_cstr[i] = const_cast(argv[i].c_str()); argv_cstr[argv.size()] = nullptr; execvp(argv_cstr[0], argv_cstr.get()); _exit(127); } default: // parent { // Close our writing end of pipe now. Otherwise later read would not // be able to detect end of child's output (in theory we could still // write to the pipe). out_write.reset(); err_write.reset(); bool out_open = true, err_open = true; while (out_open || err_open) { fd_set read_fds; FD_ZERO(&read_fds); FD_SET(out_read.get(), &read_fds); FD_SET(err_read.get(), &read_fds); int res = HANDLE_EINTR(select(std::max(out_read.get(), err_read.get()) + 1, &read_fds, nullptr, nullptr, nullptr)); if (res <= 0) break; if (FD_ISSET(out_read.get(), &read_fds)) out_open = ReadFromPipe(out_read.get(), std_out); if (FD_ISSET(err_read.get(), &read_fds)) err_open = ReadFromPipe(err_read.get(), std_err); } base::Process process(pid); return process.WaitForExit(exit_code); } } return false; } #endif } // namespace internal