// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "tools/gn/input_file_manager.h" #include "base/bind.h" #include "base/stl_util.h" #include "tools/gn/filesystem_utils.h" #include "tools/gn/parser.h" #include "tools/gn/scheduler.h" #include "tools/gn/scope_per_file_provider.h" #include "tools/gn/tokenizer.h" #include "tools/gn/trace.h" namespace { void InvokeFileLoadCallback(const InputFileManager::FileLoadCallback& cb, const ParseNode* node) { cb.Run(node); } bool DoLoadFile(const LocationRange& origin, const BuildSettings* build_settings, const SourceFile& name, InputFile* file, std::vector* tokens, scoped_ptr* root, Err* err) { // Do all of this stuff outside the lock. We should not give out file // pointers until the read is complete. if (g_scheduler->verbose_logging()) { std::string logmsg = name.value(); if (origin.begin().file()) logmsg += " (referenced from " + origin.begin().Describe(false) + ")"; g_scheduler->Log("Loading", logmsg); } // Read. base::FilePath primary_path = build_settings->GetFullPath(name); ScopedTrace load_trace(TraceItem::TRACE_FILE_LOAD, name.value()); if (!file->Load(primary_path)) { if (!build_settings->secondary_source_path().empty()) { // Fall back to secondary source tree. base::FilePath secondary_path = build_settings->GetFullPathSecondary(name); if (!file->Load(secondary_path)) { *err = Err(origin, "Can't load input file.", "Unable to load:\n " + FilePathToUTF8(primary_path) + "\n" "I also checked in the secondary tree for:\n " + FilePathToUTF8(secondary_path)); return false; } } else { *err = Err(origin, "Unable to load \"" + FilePathToUTF8(primary_path) + "\"."); return false; } } load_trace.Done(); ScopedTrace exec_trace(TraceItem::TRACE_FILE_PARSE, name.value()); // Tokenize. *tokens = Tokenizer::Tokenize(file, err); if (err->has_error()) return false; // Parse. *root = Parser::Parse(*tokens, err); if (err->has_error()) return false; exec_trace.Done(); return true; } } // namespace InputFileManager::InputFileData::InputFileData(const SourceFile& file_name) : file(file_name), loaded(false), sync_invocation(false) { } InputFileManager::InputFileData::~InputFileData() { } InputFileManager::InputFileManager() { } InputFileManager::~InputFileManager() { // Should be single-threaded by now. STLDeleteContainerPairSecondPointers(input_files_.begin(), input_files_.end()); STLDeleteContainerPointers(dynamic_inputs_.begin(), dynamic_inputs_.end()); } bool InputFileManager::AsyncLoadFile(const LocationRange& origin, const BuildSettings* build_settings, const SourceFile& file_name, const FileLoadCallback& callback, Err* err) { // Try not to schedule callbacks while holding the lock. All cases that don't // want to schedule should return early. Otherwise, this will be scheduled // after we leave the lock. base::Closure schedule_this; { base::AutoLock lock(lock_); InputFileMap::const_iterator found = input_files_.find(file_name); if (found == input_files_.end()) { // New file, schedule load. InputFileData* data = new InputFileData(file_name); data->scheduled_callbacks.push_back(callback); input_files_[file_name] = data; schedule_this = base::Bind(&InputFileManager::BackgroundLoadFile, this, origin, build_settings, file_name, &data->file); } else { InputFileData* data = found->second; // Prevent mixing async and sync loads. See SyncLoadFile for discussion. if (data->sync_invocation) { g_scheduler->FailWithError(Err( origin, "Load type mismatch.", "The file \"" + file_name.value() + "\" was previously loaded\n" "synchronously (via an import) and now you're trying to load it " "asynchronously\n(via a deps rule). This is a class 2 misdemeanor: " "a single input file must\nbe loaded the same way each time to " "avoid blowing my tiny, tiny mind.")); return false; } if (data->loaded) { // Can just directly issue the callback on the background thread. schedule_this = base::Bind(&InvokeFileLoadCallback, callback, data->parsed_root.get()); } else { // Load is pending on this file, schedule the invoke. data->scheduled_callbacks.push_back(callback); return true; } } } g_scheduler->pool()->PostWorkerTaskWithShutdownBehavior( FROM_HERE, schedule_this, base::SequencedWorkerPool::BLOCK_SHUTDOWN); return true; } const ParseNode* InputFileManager::SyncLoadFile( const LocationRange& origin, const BuildSettings* build_settings, const SourceFile& file_name, Err* err) { base::AutoLock lock(lock_); InputFileData* data = NULL; InputFileMap::iterator found = input_files_.find(file_name); if (found == input_files_.end()) { // Haven't seen this file yet, start loading right now. data = new InputFileData(file_name); data->sync_invocation = true; input_files_[file_name] = data; base::AutoUnlock unlock(lock_); if (!LoadFile(origin, build_settings, file_name, &data->file, err)) return NULL; } else { // This file has either been loaded or is pending loading. data = found->second; if (!data->sync_invocation) { // Don't allow mixing of sync and async loads. If an async load is // scheduled and then a bunch of threads need to load it synchronously // and block on it loading, it could deadlock or at least cause a lot // of wasted CPU while those threads wait for the load to complete (which // may be far back in the input queue). // // We could work around this by promoting the load to a sync load. This // requires a bunch of extra code to either check flags and likely do // extra locking (bad) or to just do both types of load on the file and // deal with the race condition. // // I have no practical way to test this, and generally we should have // all include files processed synchronously and all build files // processed asynchronously, so it doesn't happen in practice. *err = Err( origin, "Load type mismatch.", "The file \"" + file_name.value() + "\" was previously loaded\n" "asynchronously (via a deps rule) and now you're trying to load it " "synchronously.\nThis is a class 2 misdemeanor: a single input file " "must be loaded the same way\neach time to avoid blowing my tiny, " "tiny mind."); return NULL; } if (!data->loaded) { // Wait for the already-pending sync load to complete. if (!data->completion_event) data->completion_event.reset(new base::WaitableEvent(false, false)); { base::AutoUnlock unlock(lock_); data->completion_event->Wait(); } // If there were multiple waiters on the same event, we now need to wake // up the next one. data->completion_event->Signal(); } } // The other load could have failed. In this case that error was probably // printed to the console, but we need to return something here, so make up a // dummy error. // // There is a race condition. The other load could have failed, but if the // other thread is delayed for some reason, this thread could end up // reporting the error to the scheduler first (since first error report // wins). The user will see this one and the "real" one will be discarded. if (!data->parsed_root) { *err = Err(origin, "File parse failed.", "If you see this, I'm really sorry, but a race condition has caused\n" "me to eat your error message. It was crunchy. If the parse error\n" "in your imported file isn't obvious, try re-running GN."); } return data->parsed_root.get(); } void InputFileManager::AddDynamicInput(const SourceFile& name, InputFile** file, std::vector** tokens, scoped_ptr** parse_root) { InputFileData* data = new InputFileData(name); { base::AutoLock lock(lock_); dynamic_inputs_.push_back(data); } *file = &data->file; *tokens = &data->tokens; *parse_root = &data->parsed_root; } int InputFileManager::GetInputFileCount() const { base::AutoLock lock(lock_); return static_cast(input_files_.size()); } void InputFileManager::GetAllPhysicalInputFileNames( std::vector* result) const { base::AutoLock lock(lock_); result->reserve(input_files_.size()); for (const auto& file : input_files_) { if (!file.second->file.physical_name().empty()) result->push_back(file.second->file.physical_name()); } } void InputFileManager::BackgroundLoadFile(const LocationRange& origin, const BuildSettings* build_settings, const SourceFile& name, InputFile* file) { Err err; if (!LoadFile(origin, build_settings, name, file, &err)) g_scheduler->FailWithError(err); } bool InputFileManager::LoadFile(const LocationRange& origin, const BuildSettings* build_settings, const SourceFile& name, InputFile* file, Err* err) { std::vector tokens; scoped_ptr root; bool success = DoLoadFile(origin, build_settings, name, file, &tokens, &root, err); // Can't return early. We have to ensure that the completion event is // signaled in all cases bacause another thread could be blocked on this one. // Save this pointer for running the callbacks below, which happens after the // scoped ptr ownership is taken away inside the lock. ParseNode* unowned_root = root.get(); std::vector callbacks; { base::AutoLock lock(lock_); DCHECK(input_files_.find(name) != input_files_.end()); InputFileData* data = input_files_[name]; data->loaded = true; if (success) { data->tokens.swap(tokens); data->parsed_root = root.Pass(); } // Unblock waiters on this event. // // It's somewhat bad to signal this inside the lock. When it's used, it's // lazily created inside the lock. So we need to do the check and signal // inside the lock to avoid race conditions on the lazy creation of the // lock. // // We could avoid this by creating the lock every time, but the lock is // very seldom used and will generally be NULL, so my current theory is that // several signals of a completion event inside a lock is better than // creating about 1000 extra locks (one for each file). if (data->completion_event) data->completion_event->Signal(); callbacks.swap(data->scheduled_callbacks); } // Run pending invocations. Theoretically we could schedule each of these // separately to get some parallelism. But normally there will only be one // item in the list, so that's extra overhead and complexity for no gain. if (success) { for (const auto& cb : callbacks) cb.Run(unowned_root); } return success; }