// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "tools/gn/scope.h" #include "base/logging.h" #include "base/stl_util.h" #include "tools/gn/parse_tree.h" #include "tools/gn/template.h" namespace { // FLags set in the mode_flags_ of a scope. If a bit is set, it applies // recursively to all dependent scopes. const unsigned kProcessingBuildConfigFlag = 1; const unsigned kProcessingImportFlag = 2; // Returns true if this variable name should be considered private. Private // values start with an underscore, and are not imported from "gni" files // when processing an import. bool IsPrivateVar(const base::StringPiece& name) { return name.empty() || name[0] == '_'; } } // namespace Scope::ProgrammaticProvider::~ProgrammaticProvider() { scope_->RemoveProvider(this); } Scope::Scope(const Settings* settings) : const_containing_(nullptr), mutable_containing_(nullptr), settings_(settings), mode_flags_(0), item_collector_(nullptr) { } Scope::Scope(Scope* parent) : const_containing_(nullptr), mutable_containing_(parent), settings_(parent->settings()), mode_flags_(0), item_collector_(nullptr) { } Scope::Scope(const Scope* parent) : const_containing_(parent), mutable_containing_(nullptr), settings_(parent->settings()), mode_flags_(0), item_collector_(nullptr) { } Scope::~Scope() { STLDeleteContainerPairSecondPointers(target_defaults_.begin(), target_defaults_.end()); } const Value* Scope::GetValue(const base::StringPiece& ident, bool counts_as_used) { // First check for programmatically-provided values. for (const auto& provider : programmatic_providers_) { const Value* v = provider->GetProgrammaticValue(ident); if (v) return v; } RecordMap::iterator found = values_.find(ident); if (found != values_.end()) { if (counts_as_used) found->second.used = true; return &found->second.value; } // Search in the parent scope. if (const_containing_) return const_containing_->GetValue(ident); if (mutable_containing_) return mutable_containing_->GetValue(ident, counts_as_used); return nullptr; } Value* Scope::GetMutableValue(const base::StringPiece& ident, bool counts_as_used) { // Don't do programmatic values, which are not mutable. RecordMap::iterator found = values_.find(ident); if (found != values_.end()) { if (counts_as_used) found->second.used = true; return &found->second.value; } // Search in the parent mutable scope, but not const one. if (mutable_containing_) return mutable_containing_->GetMutableValue(ident, counts_as_used); return nullptr; } Value* Scope::GetValueForcedToCurrentScope(const base::StringPiece& ident, const ParseNode* set_node) { RecordMap::iterator found = values_.find(ident); if (found != values_.end()) return &found->second.value; // Already have in the current scope. // Search in the parent scope. if (containing()) { const Value* in_containing = containing()->GetValue(ident); if (in_containing) { // Promote to current scope. return SetValue(ident, *in_containing, set_node); } } return nullptr; } base::StringPiece Scope::GetStorageKey(const base::StringPiece& ident) const { RecordMap::const_iterator found = values_.find(ident); if (found != values_.end()) return found->first; // Search in parent scope. if (containing()) return containing()->GetStorageKey(ident); return base::StringPiece(); } const Value* Scope::GetValue(const base::StringPiece& ident) const { RecordMap::const_iterator found = values_.find(ident); if (found != values_.end()) return &found->second.value; if (containing()) return containing()->GetValue(ident); return nullptr; } Value* Scope::SetValue(const base::StringPiece& ident, const Value& v, const ParseNode* set_node) { Record& r = values_[ident]; // Clears any existing value. r.value = v; r.value.set_origin(set_node); return &r.value; } void Scope::RemoveIdentifier(const base::StringPiece& ident) { RecordMap::iterator found = values_.find(ident); if (found != values_.end()) values_.erase(found); } void Scope::RemovePrivateIdentifiers() { // Do it in two phases to avoid mutating while iterating. Our hash map is // currently backed by several different vendor-specific implementations and // I'm not sure if all of them support mutating while iterating. Since this // is not perf-critical, do the safe thing. std::vector to_remove; for (const auto& cur : values_) { if (IsPrivateVar(cur.first)) to_remove.push_back(cur.first); } for (const auto& cur : to_remove) values_.erase(cur); } bool Scope::AddTemplate(const std::string& name, const Template* templ) { if (GetTemplate(name)) return false; templates_[name] = templ; return true; } const Template* Scope::GetTemplate(const std::string& name) const { TemplateMap::const_iterator found = templates_.find(name); if (found != templates_.end()) return found->second.get(); if (containing()) return containing()->GetTemplate(name); return nullptr; } void Scope::MarkUsed(const base::StringPiece& ident) { RecordMap::iterator found = values_.find(ident); if (found == values_.end()) { NOTREACHED(); return; } found->second.used = true; } void Scope::MarkAllUsed() { for (auto& cur : values_) cur.second.used = true; } void Scope::MarkUnused(const base::StringPiece& ident) { RecordMap::iterator found = values_.find(ident); if (found == values_.end()) { NOTREACHED(); return; } found->second.used = false; } bool Scope::IsSetButUnused(const base::StringPiece& ident) const { RecordMap::const_iterator found = values_.find(ident); if (found != values_.end()) { if (!found->second.used) { return true; } } return false; } bool Scope::CheckForUnusedVars(Err* err) const { for (const auto& pair : values_) { if (!pair.second.used) { std::string help = "You set the variable \"" + pair.first.as_string() + "\" here and it was unused before it went\nout of scope."; const BinaryOpNode* binary = pair.second.value.origin()->AsBinaryOp(); if (binary && binary->op().type() == Token::EQUAL) { // Make a nicer error message for normal var sets. *err = Err(binary->left()->GetRange(), "Assignment had no effect.", help); } else { // This will happen for internally-generated variables. *err = Err(pair.second.value.origin(), "Assignment had no effect.", help); } return false; } } return true; } void Scope::GetCurrentScopeValues(KeyValueMap* output) const { for (const auto& pair : values_) (*output)[pair.first] = pair.second.value; } bool Scope::NonRecursiveMergeTo(Scope* dest, const MergeOptions& options, const ParseNode* node_for_err, const char* desc_for_err, Err* err) const { // Values. for (const auto& pair : values_) { if (options.skip_private_vars && IsPrivateVar(pair.first)) continue; // Skip this private var. const Value& new_value = pair.second.value; if (!options.clobber_existing) { const Value* existing_value = dest->GetValue(pair.first); if (existing_value && new_value != *existing_value) { // Value present in both the source and the dest. std::string desc_string(desc_for_err); *err = Err(node_for_err, "Value collision.", "This " + desc_string + " contains \"" + pair.first.as_string() + "\""); err->AppendSubErr(Err(pair.second.value, "defined here.", "Which would clobber the one in your current scope")); err->AppendSubErr(Err(*existing_value, "defined here.", "Executing " + desc_string + " should not conflict with anything " "in the current\nscope unless the values are identical.")); return false; } } dest->values_[pair.first] = pair.second; if (options.mark_dest_used) dest->MarkUsed(pair.first); } // Target defaults are owning pointers. for (const auto& pair : target_defaults_) { if (!options.clobber_existing) { if (dest->GetTargetDefaults(pair.first)) { // TODO(brettw) it would be nice to know the origin of a // set_target_defaults so we can give locations for the colliding target // defaults. std::string desc_string(desc_for_err); *err = Err(node_for_err, "Target defaults collision.", "This " + desc_string + " contains target defaults for\n" "\"" + pair.first + "\" which would clobber one for the\n" "same target type in your current scope. It's unfortunate that I'm " "too stupid\nto tell you the location of where the target defaults " "were set. Usually\nthis happens in the BUILDCONFIG.gn file."); return false; } } // Be careful to delete any pointer we're about to clobber. Scope** dest_scope = &dest->target_defaults_[pair.first]; if (*dest_scope) delete *dest_scope; *dest_scope = new Scope(settings_); pair.second->NonRecursiveMergeTo(*dest_scope, options, node_for_err, "", err); } // Sources assignment filter. if (sources_assignment_filter_) { if (!options.clobber_existing) { if (dest->GetSourcesAssignmentFilter()) { // Sources assignment filter present in both the source and the dest. std::string desc_string(desc_for_err); *err = Err(node_for_err, "Assignment filter collision.", "The " + desc_string + " contains a sources_assignment_filter " "which\nwould clobber the one in your current scope."); return false; } } dest->sources_assignment_filter_.reset( new PatternList(*sources_assignment_filter_)); } // Templates. for (const auto& pair : templates_) { if (options.skip_private_vars && IsPrivateVar(pair.first)) continue; // Skip this private template. if (!options.clobber_existing) { const Template* existing_template = dest->GetTemplate(pair.first); // Since templates are refcounted, we can check if it's the same one by // comparing pointers. if (existing_template && pair.second.get() != existing_template) { // Rule present in both the source and the dest, and they're not the // same one. std::string desc_string(desc_for_err); *err = Err(node_for_err, "Template collision.", "This " + desc_string + " contains a template \"" + pair.first + "\""); err->AppendSubErr(Err(pair.second->GetDefinitionRange(), "defined here.", "Which would clobber the one in your current scope")); err->AppendSubErr(Err(existing_template->GetDefinitionRange(), "defined here.", "Executing " + desc_string + " should not conflict with anything " "in the current\nscope.")); return false; } } // Be careful to delete any pointer we're about to clobber. dest->templates_[pair.first] = pair.second; } return true; } scoped_ptr Scope::MakeClosure() const { scoped_ptr result; if (const_containing_) { // We reached the top of the mutable scope stack. The result scope just // references the const scope (which will never change). result.reset(new Scope(const_containing_)); } else if (mutable_containing_) { // There are more nested mutable scopes. Recursively go up the stack to // get the closure. result = mutable_containing_->MakeClosure(); } else { // This is a standalone scope, just copy it. result.reset(new Scope(settings_)); } // Want to clobber since we've flattened some nested scopes, and our parent // scope may have a duplicate value set. MergeOptions options; options.clobber_existing = true; // Add in our variables and we're done. Err err; NonRecursiveMergeTo(result.get(), options, nullptr, "", &err); DCHECK(!err.has_error()); return result.Pass(); } Scope* Scope::MakeTargetDefaults(const std::string& target_type) { if (GetTargetDefaults(target_type)) return nullptr; Scope** dest = &target_defaults_[target_type]; if (*dest) { NOTREACHED(); // Already set. return *dest; } *dest = new Scope(settings_); return *dest; } const Scope* Scope::GetTargetDefaults(const std::string& target_type) const { NamedScopeMap::const_iterator found = target_defaults_.find(target_type); if (found != target_defaults_.end()) return found->second; if (containing()) return containing()->GetTargetDefaults(target_type); return nullptr; } const PatternList* Scope::GetSourcesAssignmentFilter() const { if (sources_assignment_filter_) return sources_assignment_filter_.get(); if (containing()) return containing()->GetSourcesAssignmentFilter(); return nullptr; } void Scope::SetProcessingBuildConfig() { DCHECK((mode_flags_ & kProcessingBuildConfigFlag) == 0); mode_flags_ |= kProcessingBuildConfigFlag; } void Scope::ClearProcessingBuildConfig() { DCHECK(mode_flags_ & kProcessingBuildConfigFlag); mode_flags_ &= ~(kProcessingBuildConfigFlag); } bool Scope::IsProcessingBuildConfig() const { if (mode_flags_ & kProcessingBuildConfigFlag) return true; if (containing()) return containing()->IsProcessingBuildConfig(); return false; } void Scope::SetProcessingImport() { DCHECK((mode_flags_ & kProcessingImportFlag) == 0); mode_flags_ |= kProcessingImportFlag; } void Scope::ClearProcessingImport() { DCHECK(mode_flags_ & kProcessingImportFlag); mode_flags_ &= ~(kProcessingImportFlag); } bool Scope::IsProcessingImport() const { if (mode_flags_ & kProcessingImportFlag) return true; if (containing()) return containing()->IsProcessingImport(); return false; } const SourceDir& Scope::GetSourceDir() const { if (!source_dir_.is_null()) return source_dir_; if (containing()) return containing()->GetSourceDir(); return source_dir_; } Scope::ItemVector* Scope::GetItemCollector() { if (item_collector_) return item_collector_; if (mutable_containing()) return mutable_containing()->GetItemCollector(); return nullptr; } void Scope::SetProperty(const void* key, void* value) { if (!value) { DCHECK(properties_.find(key) != properties_.end()); properties_.erase(key); } else { properties_[key] = value; } } void* Scope::GetProperty(const void* key, const Scope** found_on_scope) const { PropertyMap::const_iterator found = properties_.find(key); if (found != properties_.end()) { if (found_on_scope) *found_on_scope = this; return found->second; } if (containing()) return containing()->GetProperty(key, found_on_scope); return nullptr; } void Scope::AddProvider(ProgrammaticProvider* p) { programmatic_providers_.insert(p); } void Scope::RemoveProvider(ProgrammaticProvider* p) { DCHECK(programmatic_providers_.find(p) != programmatic_providers_.end()); programmatic_providers_.erase(p); }