// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/macros.h" #include "base/memory/scoped_ptr.h" #include "base/strings/string_number_conversions.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/accessibility/ax_node.h" #include "ui/accessibility/ax_serializable_tree.h" #include "ui/accessibility/ax_tree.h" #include "ui/accessibility/ax_tree_serializer.h" #include "ui/accessibility/tree_generator.h" namespace ui { namespace { // A function to turn a tree into a string, capturing only the node ids // and their relationship to one another. // // The string format is kind of like an S-expression, with each expression // being either a node id, or a node id followed by a subexpression // representing its children. // // Examples: // // (1) is a tree with a single node with id 1. // (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children. // (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2. void TreeToStringHelper(const AXNode* node, std::string* out_result) { *out_result += base::IntToString(node->id()); if (node->child_count() != 0) { *out_result += " ("; for (int i = 0; i < node->child_count(); ++i) { if (i != 0) *out_result += " "; TreeToStringHelper(node->ChildAtIndex(i), out_result); } *out_result += ")"; } } std::string TreeToString(const AXTree& tree) { std::string result; TreeToStringHelper(tree.root(), &result); return "(" + result + ")"; } } // anonymous namespace // Test the TreeGenerator class by building all possible trees with // 3 nodes and the ids [1...3], with no permutations of ids. TEST(AXGeneratedTreeTest, TestTreeGeneratorNoPermutations) { int tree_size = 3; TreeGenerator generator(tree_size, false); const char* EXPECTED_TREES[] = { "(1)", "(1 (2))", "(1 (2 3))", "(1 (2 (3)))", }; int n = generator.UniqueTreeCount(); ASSERT_EQ(static_cast(arraysize(EXPECTED_TREES)), n); for (int i = 0; i < n; ++i) { AXTree tree; generator.BuildUniqueTree(i, &tree); std::string str = TreeToString(tree); EXPECT_EQ(EXPECTED_TREES[i], str); } } // Test the TreeGenerator class by building all possible trees with // 3 nodes and the ids [1...3] permuted in any order. TEST(AXGeneratedTreeTest, TestTreeGeneratorWithPermutations) { int tree_size = 3; TreeGenerator generator(tree_size, true); const char* EXPECTED_TREES[] = { "(1)", "(1 (2))", "(2 (1))", "(1 (2 3))", "(2 (1 3))", "(3 (1 2))", "(1 (3 2))", "(2 (3 1))", "(3 (2 1))", "(1 (2 (3)))", "(2 (1 (3)))", "(3 (1 (2)))", "(1 (3 (2)))", "(2 (3 (1)))", "(3 (2 (1)))", }; int n = generator.UniqueTreeCount(); ASSERT_EQ(static_cast(arraysize(EXPECTED_TREES)), n); for (int i = 0; i < n; i++) { AXTree tree; generator.BuildUniqueTree(i, &tree); std::string str = TreeToString(tree); EXPECT_EQ(EXPECTED_TREES[i], str); } } // Test mutating every possible tree with nodes to every other possible // tree with nodes, where is 4 in release mode and 3 in debug mode // (for speed). For each possible combination of trees, we also vary which // node we serialize first. // // For every possible scenario, we check that the AXTreeUpdate is valid, // that the destination tree can unserialize it and create a valid tree, // and that after updating all nodes the resulting tree now matches the // intended tree. TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) { // Do a more exhaustive test in release mode. If you're modifying // the algorithm you may want to try even larger tree sizes if you // can afford the time. #ifdef NDEBUG int max_tree_size = 4; #else LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4."; int max_tree_size = 3; #endif TreeGenerator generator0(max_tree_size, false); int n0 = generator0.UniqueTreeCount(); TreeGenerator generator1(max_tree_size, true); int n1 = generator1.UniqueTreeCount(); for (int i = 0; i < n0; i++) { // Build the first tree, tree0. AXSerializableTree tree0; generator0.BuildUniqueTree(i, &tree0); SCOPED_TRACE("tree0 is " + TreeToString(tree0)); for (int j = 0; j < n1; j++) { // Build the second tree, tree1. AXSerializableTree tree1; generator1.BuildUniqueTree(j, &tree1); SCOPED_TRACE("tree1 is " + TreeToString(tree1)); int tree_size = tree1.size(); // Now iterate over which node to update first, |k|. for (int k = 0; k < tree_size; k++) { SCOPED_TRACE("i=" + base::IntToString(i) + " j=" + base::IntToString(j) + " k=" + base::IntToString(k)); // Start by serializing tree0 and unserializing it into a new // empty tree |dst_tree|. scoped_ptr > tree0_source(tree0.CreateTreeSource()); AXTreeSerializer serializer( tree0_source.get()); AXTreeUpdate update0; ASSERT_TRUE(serializer.SerializeChanges(tree0.root(), &update0)); AXTree dst_tree; ASSERT_TRUE(dst_tree.Unserialize(update0)); // At this point, |dst_tree| should now be identical to |tree0|. EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree)); // Next, pretend that tree0 turned into tree1, and serialize // a sequence of updates to |dst_tree| to match. scoped_ptr > tree1_source(tree1.CreateTreeSource()); serializer.ChangeTreeSourceForTesting(tree1_source.get()); for (int k_index = 0; k_index < tree_size; ++k_index) { int id = 1 + (k + k_index) % tree_size; AXTreeUpdate update; ASSERT_TRUE( serializer.SerializeChanges(tree1.GetFromId(id), &update)); ASSERT_TRUE(dst_tree.Unserialize(update)); } // After the sequence of updates, |dst_tree| should now be // identical to |tree1|. EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree)); } } } } } // namespace ui