// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/accessibility/ax_tree.h" #include #include #include "base/logging.h" #include "base/strings/stringprintf.h" #include "ui/accessibility/ax_node.h" namespace ui { namespace { std::string TreeToStringHelper(AXNode* node, int indent) { std::string result = std::string(2 * indent, ' '); result += node->data().ToString() + "\n"; for (int i = 0; i < node->child_count(); ++i) result += TreeToStringHelper(node->ChildAtIndex(i), indent + 1); return result; } } // namespace // Intermediate state to keep track of during a tree update. struct AXTreeUpdateState { AXTreeUpdateState() : new_root(nullptr) {} // During an update, this keeps track of all nodes that have been // implicitly referenced as part of this update, but haven't been // updated yet. It's an error if there are any pending nodes at the // end of Unserialize. std::set pending_nodes; // Keeps track of new nodes created during this update. std::set new_nodes; // The new root in this update, if any. AXNode* new_root; }; AXTreeDelegate::AXTreeDelegate() { } AXTreeDelegate::~AXTreeDelegate() { } AXTree::AXTree() : delegate_(NULL), root_(NULL) { AXNodeData root; root.id = -1; root.role = AX_ROLE_ROOT_WEB_AREA; AXTreeUpdate initial_state; initial_state.nodes.push_back(root); CHECK(Unserialize(initial_state)) << error(); } AXTree::AXTree(const AXTreeUpdate& initial_state) : delegate_(NULL), root_(NULL) { CHECK(Unserialize(initial_state)) << error(); } AXTree::~AXTree() { if (root_) DestroyNodeAndSubtree(root_, nullptr); } void AXTree::SetDelegate(AXTreeDelegate* delegate) { delegate_ = delegate; } AXNode* AXTree::GetFromId(int32_t id) const { base::hash_map::const_iterator iter = id_map_.find(id); return iter != id_map_.end() ? iter->second : NULL; } void AXTree::UpdateData(const AXTreeData& data) { data_ = data; if (delegate_) delegate_->OnTreeDataChanged(this); } bool AXTree::Unserialize(const AXTreeUpdate& update) { AXTreeUpdateState update_state; int32_t old_root_id = root_ ? root_->id() : 0; if (update.has_tree_data) UpdateData(update.tree_data); if (update.node_id_to_clear != 0) { AXNode* node = GetFromId(update.node_id_to_clear); if (!node) { error_ = base::StringPrintf("Bad node_id_to_clear: %d", update.node_id_to_clear); return false; } if (node == root_) { // Clear root_ before calling DestroySubtree so that root_ doesn't // ever point to an invalid node. AXNode* old_root = root_; root_ = nullptr; DestroySubtree(old_root, &update_state); } else { for (int i = 0; i < node->child_count(); ++i) DestroySubtree(node->ChildAtIndex(i), &update_state); std::vector children; node->SwapChildren(children); update_state.pending_nodes.insert(node); } } for (size_t i = 0; i < update.nodes.size(); ++i) { if (!UpdateNode(update.nodes[i], &update_state)) return false; } if (!update_state.pending_nodes.empty()) { error_ = "Nodes left pending by the update:"; for (std::set::iterator iter = update_state.pending_nodes.begin(); iter != update_state.pending_nodes.end(); ++iter) { error_ += base::StringPrintf(" %d", (*iter)->id()); } return false; } if (delegate_) { std::set& new_nodes = update_state.new_nodes; std::vector changes; changes.reserve(update.nodes.size()); for (size_t i = 0; i < update.nodes.size(); ++i) { AXNode* node = GetFromId(update.nodes[i].id); if (new_nodes.find(node) != new_nodes.end()) { if (new_nodes.find(node->parent()) == new_nodes.end()) { changes.push_back( AXTreeDelegate::Change(node, AXTreeDelegate::SUBTREE_CREATED)); } else { changes.push_back( AXTreeDelegate::Change(node, AXTreeDelegate::NODE_CREATED)); } } else { changes.push_back( AXTreeDelegate::Change(node, AXTreeDelegate::NODE_CHANGED)); } } delegate_->OnAtomicUpdateFinished( this, root_->id() != old_root_id, changes); } return true; } std::string AXTree::ToString() const { return "AXTree" + data_.ToString() + "\n" + TreeToStringHelper(root_, 0); } AXNode* AXTree::CreateNode(AXNode* parent, int32_t id, int32_t index_in_parent) { AXNode* new_node = new AXNode(parent, id, index_in_parent); id_map_[new_node->id()] = new_node; if (delegate_) delegate_->OnNodeCreated(this, new_node); return new_node; } bool AXTree::UpdateNode(const AXNodeData& src, AXTreeUpdateState* update_state) { // This method updates one node in the tree based on serialized data // received in an AXTreeUpdate. See AXTreeUpdate for pre and post // conditions. // Look up the node by id. If it's not found, then either the root // of the tree is being swapped, or we're out of sync with the source // and this is a serious error. AXNode* node = GetFromId(src.id); if (node) { update_state->pending_nodes.erase(node); if (delegate_) delegate_->OnNodeDataWillChange(this, node->data(), src); node->SetData(src); } else { if (src.role != AX_ROLE_ROOT_WEB_AREA && src.role != AX_ROLE_DESKTOP) { error_ = base::StringPrintf( "%d is not in the tree and not the new root", src.id); return false; } if (update_state->new_root) { error_ = "Tree update contains two new roots"; return false; } update_state->new_root = CreateNode(NULL, src.id, 0); node = update_state->new_root; update_state->new_nodes.insert(node); node->SetData(src); } if (delegate_) delegate_->OnNodeChanged(this, node); // First, delete nodes that used to be children of this node but aren't // anymore. if (!DeleteOldChildren(node, src.child_ids, update_state)) { if (update_state->new_root) DestroySubtree(update_state->new_root, update_state); return false; } // Now build a new children vector, reusing nodes when possible, // and swap it in. std::vector new_children; bool success = CreateNewChildVector( node, src.child_ids, &new_children, update_state); node->SwapChildren(new_children); // Update the root of the tree if needed. if ((src.role == AX_ROLE_ROOT_WEB_AREA || src.role == AX_ROLE_DESKTOP) && (!root_ || root_->id() != src.id)) { // Make sure root_ always points to something valid or null_, even inside // DestroySubtree. AXNode* old_root = root_; root_ = node; if (old_root) DestroySubtree(old_root, update_state); } return success; } void AXTree::DestroySubtree(AXNode* node, AXTreeUpdateState* update_state) { if (delegate_) delegate_->OnSubtreeWillBeDeleted(this, node); DestroyNodeAndSubtree(node, update_state); } void AXTree::DestroyNodeAndSubtree(AXNode* node, AXTreeUpdateState* update_state) { if (delegate_) delegate_->OnNodeWillBeDeleted(this, node); id_map_.erase(node->id()); for (int i = 0; i < node->child_count(); ++i) DestroyNodeAndSubtree(node->ChildAtIndex(i), update_state); if (update_state) { update_state->pending_nodes.erase(node); } node->Destroy(); } bool AXTree::DeleteOldChildren(AXNode* node, const std::vector& new_child_ids, AXTreeUpdateState* update_state) { // Create a set of child ids in |src| for fast lookup, and return false // if a duplicate is found; std::set new_child_id_set; for (size_t i = 0; i < new_child_ids.size(); ++i) { if (new_child_id_set.find(new_child_ids[i]) != new_child_id_set.end()) { error_ = base::StringPrintf("Node %d has duplicate child id %d", node->id(), new_child_ids[i]); return false; } new_child_id_set.insert(new_child_ids[i]); } // Delete the old children. const std::vector& old_children = node->children(); for (size_t i = 0; i < old_children.size(); ++i) { int old_id = old_children[i]->id(); if (new_child_id_set.find(old_id) == new_child_id_set.end()) DestroySubtree(old_children[i], update_state); } return true; } bool AXTree::CreateNewChildVector(AXNode* node, const std::vector& new_child_ids, std::vector* new_children, AXTreeUpdateState* update_state) { bool success = true; for (size_t i = 0; i < new_child_ids.size(); ++i) { int32_t child_id = new_child_ids[i]; int32_t index_in_parent = static_cast(i); AXNode* child = GetFromId(child_id); if (child) { if (child->parent() != node) { // This is a serious error - nodes should never be reparented. // If this case occurs, continue so this node isn't left in an // inconsistent state, but return failure at the end. error_ = base::StringPrintf( "Node %d reparented from %d to %d", child->id(), child->parent() ? child->parent()->id() : 0, node->id()); success = false; continue; } child->SetIndexInParent(index_in_parent); } else { child = CreateNode(node, child_id, index_in_parent); update_state->pending_nodes.insert(child); update_state->new_nodes.insert(child); } new_children->push_back(child); } return success; } } // namespace ui