// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_ #define UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_ #include #include "base/containers/hash_tables.h" #include "base/logging.h" #include "base/stl_util.h" #include "ui/accessibility/ax_tree_source.h" #include "ui/accessibility/ax_tree_update.h" namespace ui { struct ClientTreeNode; // AXTreeSerializer is a helper class that serializes incremental // updates to an AXTreeSource as a AXTreeUpdate struct. // These structs can be unserialized by a client object such as an // AXTree. An AXTreeSerializer keeps track of the tree of node ids that its // client is aware of so that it will never generate an AXTreeUpdate that // results in an invalid tree. // // Every node in the source tree must have an id that's a unique positive // integer, the same node must not appear twice. // // Usage: // // You must call SerializeChanges() every time a node in the tree changes, // and send the generated AXTreeUpdate to the client. // // If a node is added, call SerializeChanges on its parent. // If a node is removed, call SerializeChanges on its parent. // If a whole new subtree is added, just call SerializeChanges on its root. // If the root of the tree changes, call SerializeChanges on the new root. // // AXTreeSerializer will avoid re-serializing nodes that do not change. // For example, if node 1 has children 2, 3, 4, 5 and then child 2 is // removed and a new child 6 is added, the AXTreeSerializer will only // update nodes 1 and 6 (and any children of node 6 recursively). It will // assume that nodes 3, 4, and 5 are not modified unless you explicitly // call SerializeChanges() on them. // // As long as the source tree has unique ids for every node and no loops, // and as long as every update is applied to the client tree, AXTreeSerializer // will continue to work. If the source tree makes a change but fails to // call SerializeChanges properly, the trees may get out of sync - but // because AXTreeSerializer always keeps track of what updates it's sent, // it will never send an invalid update and the client tree will not break, // it just may not contain all of the changes. template class AXTreeSerializer { public: explicit AXTreeSerializer(AXTreeSource* tree); ~AXTreeSerializer(); // Throw out the internal state that keeps track of the nodes the client // knows about. This has the effect that the next update will send the // entire tree over because it assumes the client knows nothing. void Reset(); // Serialize all changes to |node| and append them to |out_update|. void SerializeChanges(AXSourceNode node, AXTreeUpdate* out_update); // Delete the client subtree for this node, ensuring that the subtree // is re-serialized. void DeleteClientSubtree(AXSourceNode node); // Only for unit testing. Normally this class relies on getting a call // to SerializeChanges() every time the source tree changes. For unit // testing, it's convenient to create a static AXTree for the initial // state and then call ChangeTreeSourceForTesting and then SerializeChanges // to simulate the changes you'd get if a tree changed from the initial // state to the second tree's state. void ChangeTreeSourceForTesting(AXTreeSource* new_tree); private: // Return the least common ancestor of a node in the source tree // and a node in the client tree, or NULL if there is no such node. // The least common ancestor is the closest ancestor to |node| (which // may be |node| itself) that's in both the source tree and client tree, // and for which both the source and client tree agree on their ancestor // chain up to the root. // // Example 1: // // Client Tree Source tree | // 1 1 | // / \ / \ | // 2 3 2 4 | // // LCA(source node 2, client node 2) is node 2. // LCA(source node 3, client node 4) is node 1. // // Example 2: // // Client Tree Source tree | // 1 1 | // / \ / \ | // 2 3 2 3 | // / \ / / | // 4 7 8 4 | // / \ / \ | // 5 6 5 6 | // // LCA(source node 8, client node 7) is node 2. // LCA(source node 5, client node 5) is node 1. // It's not node 5, because the two trees disagree on the parent of // node 4, so the LCA is the first ancestor both trees agree on. AXSourceNode LeastCommonAncestor(AXSourceNode node, ClientTreeNode* client_node); // Return the least common ancestor of |node| that's in the client tree. // This just walks up the ancestors of |node| until it finds a node that's // also in the client tree, and then calls LeastCommonAncestor on the // source node and client node. AXSourceNode LeastCommonAncestor(AXSourceNode node); // Walk the subtree rooted at |node| and return true if any nodes that // would be updated are being reparented. If so, update |out_lca| to point // to the least common ancestor of the previous LCA and the previous // parent of the node being reparented. bool AnyDescendantWasReparented(AXSourceNode node, AXSourceNode* out_lca); ClientTreeNode* ClientTreeNodeById(int32 id); // Delete the given client tree node and recursively delete all of its // descendants. void DeleteClientSubtree(ClientTreeNode* client_node); // Helper function, called recursively with each new node to serialize. void SerializeChangedNodes(AXSourceNode node, AXTreeUpdate* out_update); // The tree source. AXTreeSource* tree_; // Our representation of the client tree. ClientTreeNode* client_root_; // A map from IDs to nodes in the client tree. base::hash_map client_id_map_; }; // In order to keep track of what nodes the client knows about, we keep a // representation of the client tree - just IDs and parent/child // relationships. struct AX_EXPORT ClientTreeNode { ClientTreeNode(); virtual ~ClientTreeNode(); int32 id; ClientTreeNode* parent; std::vector children; }; template AXTreeSerializer::AXTreeSerializer( AXTreeSource* tree) : tree_(tree), client_root_(NULL) { } template AXTreeSerializer::~AXTreeSerializer() { Reset(); } template void AXTreeSerializer::Reset() { if (!client_root_) return; DeleteClientSubtree(client_root_); client_id_map_.erase(client_root_->id); delete client_root_; client_root_ = NULL; } template void AXTreeSerializer::ChangeTreeSourceForTesting( AXTreeSource* new_tree) { tree_ = new_tree; } template AXSourceNode AXTreeSerializer::LeastCommonAncestor( AXSourceNode node, ClientTreeNode* client_node) { if (!tree_->IsValid(node) || client_node == NULL) return tree_->GetNull(); std::vector ancestors; while (tree_->IsValid(node)) { ancestors.push_back(node); node = tree_->GetParent(node); } std::vector client_ancestors; while (client_node) { client_ancestors.push_back(client_node); client_node = client_node->parent; } // Start at the root. Keep going until the source ancestor chain and // client ancestor chain disagree. The last node before they disagree // is the LCA. AXSourceNode lca = tree_->GetNull(); int source_index = static_cast(ancestors.size() - 1); int client_index = static_cast(client_ancestors.size() - 1); while (source_index >= 0 && client_index >= 0) { if (tree_->GetId(ancestors[source_index]) != client_ancestors[client_index]->id) { return lca; } lca = ancestors[source_index]; source_index--; client_index--; } return lca; } template AXSourceNode AXTreeSerializer::LeastCommonAncestor( AXSourceNode node) { // Walk up the tree until the source node's id also exists in the // client tree, then call LeastCommonAncestor on those two nodes. ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node)); while (tree_->IsValid(node) && !client_node) { node = tree_->GetParent(node); if (tree_->IsValid(node)) client_node = ClientTreeNodeById(tree_->GetId(node)); } return LeastCommonAncestor(node, client_node); } template bool AXTreeSerializer::AnyDescendantWasReparented( AXSourceNode node, AXSourceNode* out_lca) { bool result = false; int id = tree_->GetId(node); std::vector children; tree_->GetChildren(node, &children); for (size_t i = 0; i < children.size(); ++i) { AXSourceNode& child = children[i]; int child_id = tree_->GetId(child); ClientTreeNode* client_child = ClientTreeNodeById(child_id); if (client_child) { if (!client_child->parent) { // If the client child has no parent, it must have been the // previous root node, so there is no LCA and we can exit early. *out_lca = tree_->GetNull(); return true; } else if (client_child->parent->id != id) { // If the client child's parent is not this node, update the LCA // and return true (reparenting was found). *out_lca = LeastCommonAncestor(*out_lca, client_child); result = true; } else { // This child is already in the client tree, we won't // recursively serialize it so we don't need to check this // subtree recursively for reparenting. continue; } } // This is a new child or reparented child, check it recursively. if (AnyDescendantWasReparented(child, out_lca)) result = true; } return result; } template ClientTreeNode* AXTreeSerializer::ClientTreeNodeById(int32 id) { base::hash_map::iterator iter = client_id_map_.find(id); if (iter != client_id_map_.end()) return iter->second; else return NULL; } template void AXTreeSerializer::SerializeChanges( AXSourceNode node, AXTreeUpdate* out_update) { // If the node isn't in the client tree, we need to serialize starting // with the LCA. AXSourceNode lca = LeastCommonAncestor(node); // This loop computes the least common ancestor that includes the old // and new parents of any nodes that have been reparented, and clears the // whole client subtree of that LCA if necessary. If we do end up clearing // any client nodes, keep looping because we have to search for more // nodes that may have been reparented from this new LCA. bool need_delete; do { need_delete = false; if (client_root_) { if (tree_->IsValid(lca)) { // Check for any reparenting within this subtree - if there is // any, we need to delete and reserialize the whole subtree // that contains the old and new parents of the reparented node. if (AnyDescendantWasReparented(lca, &lca)) need_delete = true; } if (!tree_->IsValid(lca)) { // If there's no LCA, just tell the client to destroy the whole // tree and then we'll serialize everything from the new root. out_update->node_id_to_clear = client_root_->id; Reset(); } else if (need_delete) { // Otherwise, if we need to reserialize a subtree, first we need // to delete those nodes in our client tree so that // SerializeChangedNodes() will be sure to send them again. out_update->node_id_to_clear = tree_->GetId(lca); ClientTreeNode* client_lca = ClientTreeNodeById(tree_->GetId(lca)); CHECK(client_lca); DeleteClientSubtree(client_lca); } } } while (need_delete); // Serialize from the LCA, or from the root if there isn't one. if (!tree_->IsValid(lca)) lca = tree_->GetRoot(); SerializeChangedNodes(lca, out_update); } template void AXTreeSerializer::DeleteClientSubtree(AXSourceNode node) { ClientTreeNode* client_node = ClientTreeNodeById(tree_->GetId(node)); if (client_node) DeleteClientSubtree(client_node); } template void AXTreeSerializer::DeleteClientSubtree( ClientTreeNode* client_node) { for (size_t i = 0; i < client_node->children.size(); ++i) { client_id_map_.erase(client_node->children[i]->id); DeleteClientSubtree(client_node->children[i]); delete client_node->children[i]; } client_node->children.clear(); } template void AXTreeSerializer::SerializeChangedNodes( AXSourceNode node, AXTreeUpdate* out_update) { // This method has three responsibilities: // 1. Serialize |node| into an AXNodeData, and append it to // the AXTreeUpdate to be sent to the client. // 2. Determine if |node| has any new children that the client doesn't // know about yet, and call SerializeChangedNodes recursively on those. // 3. Update our internal data structure that keeps track of what nodes // the client knows about. // First, find the ClientTreeNode for this id in our data structure where // we keep track of what accessibility objects the client already knows // about. If we don't find it, then this must be the new root of the // accessibility tree. int id = tree_->GetId(node); ClientTreeNode* client_node = ClientTreeNodeById(id); if (!client_node) { Reset(); client_root_ = new ClientTreeNode(); client_node = client_root_; client_node->id = id; client_node->parent = NULL; client_id_map_[client_node->id] = client_node; } // Iterate over the ids of the children of |node|. // Create a set of the child ids so we can quickly look // up which children are new and which ones were there before. base::hash_set new_child_ids; std::vector children; tree_->GetChildren(node, &children); for (size_t i = 0; i < children.size(); ++i) { AXSourceNode& child = children[i]; int new_child_id = tree_->GetId(child); new_child_ids.insert(new_child_id); // This is a sanity check - there shouldn't be any reparenting // because we've already handled it above. ClientTreeNode* client_child = client_id_map_[new_child_id]; CHECK(!client_child || client_child->parent == client_node); } // Go through the old children and delete subtrees for child // ids that are no longer present, and create a map from // id to ClientTreeNode for the rest. It's important to delete // first in a separate pass so that nodes that are reparented // don't end up children of two different parents in the middle // of an update, which can lead to a double-free. base::hash_map client_child_id_map; std::vector old_children; old_children.swap(client_node->children); for (size_t i = 0; i < old_children.size(); ++i) { ClientTreeNode* old_child = old_children[i]; int old_child_id = old_child->id; if (new_child_ids.find(old_child_id) == new_child_ids.end()) { client_id_map_.erase(old_child_id); DeleteClientSubtree(old_child); delete old_child; } else { client_child_id_map[old_child_id] = old_child; } } // Serialize this node. This fills in all of the fields in // AXNodeData except child_ids, which we handle below. out_update->nodes.push_back(AXNodeData()); AXNodeData* serialized_node = &out_update->nodes.back(); tree_->SerializeNode(node, serialized_node); // TODO(dmazzoni/dtseng): Make the serializer not depend on roles to identify // the root. if (serialized_node->id == client_root_->id && (serialized_node->role != AX_ROLE_ROOT_WEB_AREA && serialized_node->role != AX_ROLE_DESKTOP)) { serialized_node->role = AX_ROLE_ROOT_WEB_AREA; } serialized_node->child_ids.clear(); // Iterate over the children, make note of the ones that are new // and need to be serialized, and update the ClientTreeNode // data structure to reflect the new tree. std::vector children_to_serialize; client_node->children.reserve(children.size()); for (size_t i = 0; i < children.size(); ++i) { AXSourceNode& child = children[i]; int child_id = tree_->GetId(child); // No need to do anything more with children that aren't new; // the client will reuse its existing object. if (new_child_ids.find(child_id) == new_child_ids.end()) continue; new_child_ids.erase(child_id); serialized_node->child_ids.push_back(child_id); if (client_child_id_map.find(child_id) != client_child_id_map.end()) { ClientTreeNode* reused_child = client_child_id_map[child_id]; client_node->children.push_back(reused_child); } else { ClientTreeNode* new_child = new ClientTreeNode(); new_child->id = child_id; new_child->parent = client_node; client_node->children.push_back(new_child); client_id_map_[child_id] = new_child; children_to_serialize.push_back(child); } } // Serialize all of the new children, recursively. for (size_t i = 0; i < children_to_serialize.size(); ++i) SerializeChangedNodes(children_to_serialize[i], out_update); } } // namespace ui #endif // UI_ACCESSIBILITY_AX_TREE_SERIALIZER_H_