// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/base/layout.h" #include #include #include #include "base/basictypes.h" #include "base/command_line.h" #include "base/logging.h" #include "build/build_config.h" #include "ui/base/touch/touch_device.h" #include "ui/base/ui_base_switches.h" #include "ui/gfx/display.h" #include "ui/gfx/image/image_skia.h" #include "ui/gfx/screen.h" #if defined(OS_WIN) #include "base/win/metro.h" #include #endif // defined(OS_WIN) namespace ui { namespace { bool ScaleFactorComparator(const ScaleFactor& lhs, const ScaleFactor& rhs){ return GetImageScale(lhs) < GetImageScale(rhs); } std::vector* g_supported_scale_factors = NULL; #if defined(OS_WIN) // Helper function that determines whether we want to optimize the UI for touch. bool UseTouchOptimizedUI() { // If --touch-optimized-ui is specified and not set to "auto", then override // the hardware-determined setting (eg. for testing purposes). static bool has_touch_optimized_ui = CommandLine::ForCurrentProcess()-> HasSwitch(switches::kTouchOptimizedUI); if (has_touch_optimized_ui) { const std::string switch_value = CommandLine::ForCurrentProcess()-> GetSwitchValueASCII(switches::kTouchOptimizedUI); // Note that simply specifying the switch is the same as enabled. if (switch_value.empty() || switch_value == switches::kTouchOptimizedUIEnabled) { return true; } else if (switch_value == switches::kTouchOptimizedUIDisabled) { return false; } else if (switch_value != switches::kTouchOptimizedUIAuto) { LOG(ERROR) << "Invalid --touch-optimized-ui option: " << switch_value; } } // We use the touch layout only when we are running in Metro mode. return base::win::IsMetroProcess() && ui::IsTouchDevicePresent(); } #endif // defined(OS_WIN) const float kScaleFactorScales[] = {1.0f, 1.0f, 1.25f, 1.33f, 1.4f, 1.5f, 1.8f, 2.0f}; COMPILE_ASSERT(NUM_SCALE_FACTORS == arraysize(kScaleFactorScales), kScaleFactorScales_incorrect_size); } // namespace DisplayLayout GetDisplayLayout() { #if defined(OS_WIN) if (UseTouchOptimizedUI()) return LAYOUT_TOUCH; #endif return LAYOUT_DESKTOP; } void SetSupportedScaleFactors( const std::vector& scale_factors) { if (g_supported_scale_factors != NULL) delete g_supported_scale_factors; g_supported_scale_factors = new std::vector(scale_factors); std::sort(g_supported_scale_factors->begin(), g_supported_scale_factors->end(), ScaleFactorComparator); // Set ImageSkia's supported scales. std::vector scales; for (std::vector::const_iterator it = g_supported_scale_factors->begin(); it != g_supported_scale_factors->end(); ++it) { scales.push_back(GetImageScale(*it)); } gfx::ImageSkia::SetSupportedScales(scales); } const std::vector& GetSupportedScaleFactors() { DCHECK(g_supported_scale_factors != NULL); return *g_supported_scale_factors; } ScaleFactor GetSupportedScaleFactor(float scale) { DCHECK(g_supported_scale_factors != NULL); ScaleFactor closest_match = SCALE_FACTOR_100P; float smallest_diff = std::numeric_limits::max(); for (size_t i = 0; i < g_supported_scale_factors->size(); ++i) { ScaleFactor scale_factor = (*g_supported_scale_factors)[i]; float diff = std::abs(kScaleFactorScales[scale_factor] - scale); if (diff < smallest_diff) { closest_match = scale_factor; smallest_diff = diff; } } DCHECK_NE(closest_match, SCALE_FACTOR_NONE); return closest_match; } float GetImageScale(ScaleFactor scale_factor) { return kScaleFactorScales[scale_factor]; } bool IsScaleFactorSupported(ScaleFactor scale_factor) { DCHECK(g_supported_scale_factors != NULL); return std::find(g_supported_scale_factors->begin(), g_supported_scale_factors->end(), scale_factor) != g_supported_scale_factors->end(); } // Returns the scale factor closest to |scale| from the full list of factors. // Note that it does NOT rely on the list of supported scale factors. // Finding the closest match is inefficient and shouldn't be done frequently. ScaleFactor FindClosestScaleFactorUnsafe(float scale) { float smallest_diff = std::numeric_limits::max(); ScaleFactor closest_match = SCALE_FACTOR_100P; for (int i = SCALE_FACTOR_100P; i < NUM_SCALE_FACTORS; ++i) { const ScaleFactor scale_factor = static_cast(i); float diff = std::abs(kScaleFactorScales[scale_factor] - scale); if (diff < smallest_diff) { closest_match = scale_factor; smallest_diff = diff; } } return closest_match; } namespace test { ScopedSetSupportedScaleFactors::ScopedSetSupportedScaleFactors( const std::vector& new_scale_factors) { if (g_supported_scale_factors) { original_scale_factors_ = new std::vector(*g_supported_scale_factors); } else { original_scale_factors_ = NULL; } SetSupportedScaleFactors(new_scale_factors); } ScopedSetSupportedScaleFactors::~ScopedSetSupportedScaleFactors() { if (original_scale_factors_) { SetSupportedScaleFactors(*original_scale_factors_); delete original_scale_factors_; } else { delete g_supported_scale_factors; g_supported_scale_factors = NULL; } } } // namespace test #if !defined(OS_MACOSX) ScaleFactor GetScaleFactorForNativeView(gfx::NativeView view) { gfx::Screen* screen = gfx::Screen::GetScreenFor(view); if (screen->IsDIPEnabled()) { gfx::Display display = screen->GetDisplayNearestWindow(view); return GetSupportedScaleFactor(display.device_scale_factor()); } return ui::SCALE_FACTOR_100P; } #endif // !defined(OS_MACOSX) } // namespace ui