// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/color_utils.h" #include #if defined(OS_WIN) #include #endif #include #include "base/basictypes.h" #include "base/logging.h" #include "base/numerics/safe_conversions.h" #include "build/build_config.h" #if defined(OS_WIN) #include "skia/ext/skia_utils_win.h" #endif #include "third_party/skia/include/core/SkBitmap.h" namespace color_utils { // Helper functions ----------------------------------------------------------- namespace { int calcHue(double temp1, double temp2, double hue) { if (hue < 0.0) ++hue; else if (hue > 1.0) --hue; double result = temp1; if (hue * 6.0 < 1.0) result = temp1 + (temp2 - temp1) * hue * 6.0; else if (hue * 2.0 < 1.0) result = temp2; else if (hue * 3.0 < 2.0) result = temp1 + (temp2 - temp1) * (2.0 / 3.0 - hue) * 6.0; // Scale the result from 0 - 255 and round off the value. return static_cast(result * 255 + .5); } // Next two functions' formulas from: // http://www.w3.org/TR/WCAG20/#relativeluminancedef // http://www.w3.org/TR/WCAG20/#contrast-ratiodef double ConvertSRGB(double eight_bit_component) { const double component = eight_bit_component / 255.0; return (component <= 0.03928) ? (component / 12.92) : pow((component + 0.055) / 1.055, 2.4); } SkColor LumaInvertColor(SkColor color) { HSL hsl; SkColorToHSL(color, &hsl); hsl.l = 1.0 - hsl.l; return HSLToSkColor(hsl, 255); } double ContrastRatio(double foreground_luminance, double background_luminance) { DCHECK_GE(foreground_luminance, 0.0); DCHECK_GE(background_luminance, 0.0); foreground_luminance += 0.05; background_luminance += 0.05; return (foreground_luminance > background_luminance) ? (foreground_luminance / background_luminance) : (background_luminance / foreground_luminance); } } // namespace // ---------------------------------------------------------------------------- unsigned char GetLuminanceForColor(SkColor color) { return base::saturated_cast( (0.3 * SkColorGetR(color)) + (0.59 * SkColorGetG(color)) + (0.11 * SkColorGetB(color))); } double RelativeLuminance(SkColor color) { return (0.2126 * ConvertSRGB(SkColorGetR(color))) + (0.7152 * ConvertSRGB(SkColorGetG(color))) + (0.0722 * ConvertSRGB(SkColorGetB(color))); } void SkColorToHSL(SkColor c, HSL* hsl) { double r = static_cast(SkColorGetR(c)) / 255.0; double g = static_cast(SkColorGetG(c)) / 255.0; double b = static_cast(SkColorGetB(c)) / 255.0; double vmax = std::max(std::max(r, g), b); double vmin = std::min(std::min(r, g), b); double delta = vmax - vmin; hsl->l = (vmax + vmin) / 2; if (SkColorGetR(c) == SkColorGetG(c) && SkColorGetR(c) == SkColorGetB(c)) { hsl->h = hsl->s = 0; } else { double dr = (((vmax - r) / 6.0) + (delta / 2.0)) / delta; double dg = (((vmax - g) / 6.0) + (delta / 2.0)) / delta; double db = (((vmax - b) / 6.0) + (delta / 2.0)) / delta; // We need to compare for the max value because comparing vmax to r, g, or b // can sometimes result in values overflowing registers. if (r >= g && r >= b) hsl->h = db - dg; else if (g >= r && g >= b) hsl->h = (1.0 / 3.0) + dr - db; else // (b >= r && b >= g) hsl->h = (2.0 / 3.0) + dg - dr; if (hsl->h < 0.0) ++hsl->h; else if (hsl->h > 1.0) --hsl->h; hsl->s = delta / ((hsl->l < 0.5) ? (vmax + vmin) : (2 - vmax - vmin)); } } SkColor HSLToSkColor(const HSL& hsl, SkAlpha alpha) { double hue = hsl.h; double saturation = hsl.s; double lightness = hsl.l; // If there's no color, we don't care about hue and can do everything based on // brightness. if (!saturation) { uint8 light; if (lightness < 0) light = 0; else if (lightness >= 1.0) light = 255; else light = static_cast(SkDoubleToFixed(lightness) >> 8); return SkColorSetARGB(alpha, light, light, light); } double temp2 = (lightness < 0.5) ? (lightness * (1.0 + saturation)) : (lightness + saturation - (lightness * saturation)); double temp1 = 2.0 * lightness - temp2; return SkColorSetARGB(alpha, calcHue(temp1, temp2, hue + 1.0 / 3.0), calcHue(temp1, temp2, hue), calcHue(temp1, temp2, hue - 1.0 / 3.0)); } bool IsWithinHSLRange(const HSL& hsl, const HSL& lower_bound, const HSL& upper_bound) { DCHECK(hsl.h >= 0 && hsl.h <= 1) << hsl.h; DCHECK(hsl.s >= 0 && hsl.s <= 1) << hsl.s; DCHECK(hsl.l >= 0 && hsl.l <= 1) << hsl.l; DCHECK(lower_bound.h < 0 || upper_bound.h < 0 || (lower_bound.h <= 1 && upper_bound.h <= lower_bound.h + 1)) << "lower_bound.h: " << lower_bound.h << ", upper_bound.h: " << upper_bound.h; DCHECK(lower_bound.s < 0 || upper_bound.s < 0 || (lower_bound.s <= upper_bound.s && upper_bound.s <= 1)) << "lower_bound.s: " << lower_bound.s << ", upper_bound.s: " << upper_bound.s; DCHECK(lower_bound.l < 0 || upper_bound.l < 0 || (lower_bound.l <= upper_bound.l && upper_bound.l <= 1)) << "lower_bound.l: " << lower_bound.l << ", upper_bound.l: " << upper_bound.l; // If the upper hue is >1, the given hue bounds wrap around at 1. bool matches_hue = upper_bound.h > 1 ? hsl.h >= lower_bound.h || hsl.h <= upper_bound.h - 1 : hsl.h >= lower_bound.h && hsl.h <= upper_bound.h; return (upper_bound.h < 0 || lower_bound.h < 0 || matches_hue) && (upper_bound.s < 0 || lower_bound.s < 0 || (hsl.s >= lower_bound.s && hsl.s <= upper_bound.s)) && (upper_bound.l < 0 || lower_bound.l < 0 || (hsl.l >= lower_bound.l && hsl.l <= upper_bound.l)); } void MakeHSLShiftValid(HSL* hsl) { if (hsl->h < 0 || hsl->h > 1) hsl->h = -1; if (hsl->s < 0 || hsl->s > 1) hsl->s = -1; if (hsl->l < 0 || hsl->l > 1) hsl->l = -1; } SkColor HSLShift(SkColor color, const HSL& shift) { HSL hsl; SkAlpha alpha = SkColorGetA(color); SkColorToHSL(color, &hsl); // Replace the hue with the tint's hue. if (shift.h >= 0) hsl.h = shift.h; // Change the saturation. if (shift.s >= 0) { if (shift.s <= 0.5) hsl.s *= shift.s * 2.0; else hsl.s += (1.0 - hsl.s) * ((shift.s - 0.5) * 2.0); } SkColor result = HSLToSkColor(hsl, alpha); if (shift.l < 0) return result; // Lightness shifts in the style of popular image editors aren't actually // represented in HSL - the L value does have some effect on saturation. double r = static_cast(SkColorGetR(result)); double g = static_cast(SkColorGetG(result)); double b = static_cast(SkColorGetB(result)); if (shift.l <= 0.5) { r *= (shift.l * 2.0); g *= (shift.l * 2.0); b *= (shift.l * 2.0); } else { r += (255.0 - r) * ((shift.l - 0.5) * 2.0); g += (255.0 - g) * ((shift.l - 0.5) * 2.0); b += (255.0 - b) * ((shift.l - 0.5) * 2.0); } return SkColorSetARGB(alpha, static_cast(r), static_cast(g), static_cast(b)); } void BuildLumaHistogram(const SkBitmap& bitmap, int histogram[256]) { DCHECK_EQ(kN32_SkColorType, bitmap.colorType()); SkAutoLockPixels bitmap_lock(bitmap); int pixel_width = bitmap.width(); int pixel_height = bitmap.height(); for (int y = 0; y < pixel_height; ++y) { for (int x = 0; x < pixel_width; ++x) ++histogram[GetLuminanceForColor(bitmap.getColor(x, y))]; } } double CalculateBoringScore(const SkBitmap& bitmap) { if (bitmap.isNull() || bitmap.empty()) return 1.0; int histogram[256] = {0}; BuildLumaHistogram(bitmap, histogram); int color_count = *std::max_element(histogram, histogram + 256); int pixel_count = bitmap.width() * bitmap.height(); return static_cast(color_count) / pixel_count; } SkColor AlphaBlend(SkColor foreground, SkColor background, SkAlpha alpha) { if (alpha == 0) return background; if (alpha == 255) return foreground; int f_alpha = SkColorGetA(foreground); int b_alpha = SkColorGetA(background); double normalizer = (f_alpha * alpha + b_alpha * (255 - alpha)) / 255.0; if (normalizer == 0.0) return SK_ColorTRANSPARENT; double f_weight = f_alpha * alpha / normalizer; double b_weight = b_alpha * (255 - alpha) / normalizer; double r = (SkColorGetR(foreground) * f_weight + SkColorGetR(background) * b_weight) / 255.0; double g = (SkColorGetG(foreground) * f_weight + SkColorGetG(background) * b_weight) / 255.0; double b = (SkColorGetB(foreground) * f_weight + SkColorGetB(background) * b_weight) / 255.0; return SkColorSetARGB(static_cast(normalizer), static_cast(r), static_cast(g), static_cast(b)); } SkColor BlendTowardOppositeLuminance(SkColor color, SkAlpha alpha) { unsigned char background_luminance = color_utils::GetLuminanceForColor(color); const SkColor blend_color = (background_luminance < 128) ? SK_ColorWHITE : SK_ColorBLACK; return color_utils::AlphaBlend(blend_color, color, alpha); } SkColor GetReadableColor(SkColor foreground, SkColor background) { const SkColor foreground2 = LumaInvertColor(foreground); const double background_luminance = RelativeLuminance(background); return (ContrastRatio(RelativeLuminance(foreground), background_luminance) >= ContrastRatio(RelativeLuminance(foreground2), background_luminance)) ? foreground : foreground2; } SkColor InvertColor(SkColor color) { return SkColorSetARGB( SkColorGetA(color), 255 - SkColorGetR(color), 255 - SkColorGetG(color), 255 - SkColorGetB(color)); } SkColor GetSysSkColor(int which) { #if defined(OS_WIN) return skia::COLORREFToSkColor(GetSysColor(which)); #else NOTIMPLEMENTED(); return SK_ColorLTGRAY; #endif } // OS_WIN implementation lives in sys_color_change_listener.cc #if !defined(OS_WIN) bool IsInvertedColorScheme() { return false; } #endif // !defined(OS_WIN) } // namespace color_utils