// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/basictypes.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/rect.h" #include "ui/gfx/rect_conversions.h" #include "ui/gfx/skia_util.h" #include namespace gfx { TEST(RectTest, Contains) { static const struct ContainsCase { int rect_x; int rect_y; int rect_width; int rect_height; int point_x; int point_y; bool contained; } contains_cases[] = { {0, 0, 10, 10, 0, 0, true}, {0, 0, 10, 10, 5, 5, true}, {0, 0, 10, 10, 9, 9, true}, {0, 0, 10, 10, 5, 10, false}, {0, 0, 10, 10, 10, 5, false}, {0, 0, 10, 10, -1, -1, false}, {0, 0, 10, 10, 50, 50, false}, #if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON) {0, 0, -10, -10, 0, 0, false}, #endif }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(contains_cases); ++i) { const ContainsCase& value = contains_cases[i]; Rect rect(value.rect_x, value.rect_y, value.rect_width, value.rect_height); EXPECT_EQ(value.contained, rect.Contains(value.point_x, value.point_y)); } } TEST(RectTest, Intersects) { static const struct { int x1; // rect 1 int y1; int w1; int h1; int x2; // rect 2 int y2; int w2; int h2; bool intersects; } tests[] = { { 0, 0, 0, 0, 0, 0, 0, 0, false }, { 0, 0, 0, 0, -10, -10, 20, 20, false }, { -10, 0, 0, 20, 0, -10, 20, 0, false }, { 0, 0, 10, 10, 0, 0, 10, 10, true }, { 0, 0, 10, 10, 10, 10, 10, 10, false }, { 10, 10, 10, 10, 0, 0, 10, 10, false }, { 10, 10, 10, 10, 5, 5, 10, 10, true }, { 10, 10, 10, 10, 15, 15, 10, 10, true }, { 10, 10, 10, 10, 20, 15, 10, 10, false }, { 10, 10, 10, 10, 21, 15, 10, 10, false } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); EXPECT_EQ(tests[i].intersects, r1.Intersects(r2)); EXPECT_EQ(tests[i].intersects, r2.Intersects(r1)); } } TEST(RectTest, Intersect) { static const struct { int x1; // rect 1 int y1; int w1; int h1; int x2; // rect 2 int y2; int w2; int h2; int x3; // rect 3: the union of rects 1 and 2 int y3; int w3; int h3; } tests[] = { { 0, 0, 0, 0, // zeros 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 4, 4, // equal 0, 0, 4, 4, 0, 0, 4, 4 }, { 0, 0, 4, 4, // neighboring 4, 4, 4, 4, 0, 0, 0, 0 }, { 0, 0, 4, 4, // overlapping corners 2, 2, 4, 4, 2, 2, 2, 2 }, { 0, 0, 4, 4, // T junction 3, 1, 4, 2, 3, 1, 1, 2 }, { 3, 0, 2, 2, // gap 0, 0, 2, 2, 0, 0, 0, 0 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3); Rect ir = IntersectRects(r1, r2); EXPECT_EQ(r3.x(), ir.x()); EXPECT_EQ(r3.y(), ir.y()); EXPECT_EQ(r3.width(), ir.width()); EXPECT_EQ(r3.height(), ir.height()); } } TEST(RectTest, Union) { static const struct Test { int x1; // rect 1 int y1; int w1; int h1; int x2; // rect 2 int y2; int w2; int h2; int x3; // rect 3: the union of rects 1 and 2 int y3; int w3; int h3; } tests[] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, { 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4 }, { 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 8, 8 }, { 0, 0, 4, 4, 0, 5, 4, 4, 0, 0, 4, 9 }, { 0, 0, 2, 2, 3, 3, 2, 2, 0, 0, 5, 5 }, { 3, 3, 2, 2, // reverse r1 and r2 from previous test 0, 0, 2, 2, 0, 0, 5, 5 }, { 0, 0, 0, 0, // union with empty rect 2, 2, 2, 2, 2, 2, 2, 2 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3); Rect u = UnionRects(r1, r2); EXPECT_EQ(r3.x(), u.x()); EXPECT_EQ(r3.y(), u.y()); EXPECT_EQ(r3.width(), u.width()); EXPECT_EQ(r3.height(), u.height()); } } TEST(RectTest, Equals) { ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0)); ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4)); ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1)); ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0)); ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0)); ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0)); } TEST(RectTest, AdjustToFit) { static const struct Test { int x1; // source int y1; int w1; int h1; int x2; // target int y2; int w2; int h2; int x3; // rect 3: results of invoking AdjustToFit int y3; int w3; int h3; } tests[] = { { 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2 }, { 2, 2, 3, 3, 0, 0, 4, 4, 1, 1, 3, 3 }, { -1, -1, 5, 5, 0, 0, 4, 4, 0, 0, 4, 4 }, { 2, 2, 4, 4, 0, 0, 3, 3, 0, 0, 3, 3 }, { 2, 2, 1, 1, 0, 0, 3, 3, 2, 2, 1, 1 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3); Rect u = r1; u.AdjustToFit(r2); EXPECT_EQ(r3.x(), u.x()); EXPECT_EQ(r3.y(), u.y()); EXPECT_EQ(r3.width(), u.width()); EXPECT_EQ(r3.height(), u.height()); } } TEST(RectTest, Subtract) { Rect result; // Matching result = Rect(10, 10, 20, 20); result.Subtract(Rect(10, 10, 20, 20)); EXPECT_EQ(Rect(0, 0, 0, 0).ToString(), result.ToString()); // Contains result = Rect(10, 10, 20, 20); result.Subtract(Rect(5, 5, 30, 30)); EXPECT_EQ(Rect(0, 0, 0, 0).ToString(), result.ToString()); // No intersection result = Rect(10, 10, 20, 20); result.Subtract(Rect(30, 30, 30, 30)); EXPECT_EQ(Rect(10, 10, 20, 20).ToString(), result.ToString()); // Not a complete intersection in either direction result = Rect(10, 10, 20, 20); result.Subtract(Rect(15, 15, 20, 20)); EXPECT_EQ(Rect(10, 10, 20, 20).ToString(), result.ToString()); // Complete intersection in the x-direction, top edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(10, 15, 20, 20)); EXPECT_EQ(Rect(10, 10, 20, 5).ToString(), result.ToString()); // Complete intersection in the x-direction, top edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(5, 15, 30, 20)); EXPECT_EQ(Rect(10, 10, 20, 5).ToString(), result.ToString()); // Complete intersection in the x-direction, bottom edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(5, 5, 30, 20)); EXPECT_EQ(Rect(10, 25, 20, 5).ToString(), result.ToString()); // Complete intersection in the x-direction, none of the edges is fully // covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(5, 15, 30, 1)); EXPECT_EQ(Rect(10, 10, 20, 20).ToString(), result.ToString()); // Complete intersection in the y-direction, left edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(10, 10, 10, 30)); EXPECT_EQ(Rect(20, 10, 10, 20).ToString(), result.ToString()); // Complete intersection in the y-direction, left edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(5, 5, 20, 30)); EXPECT_EQ(Rect(25, 10, 5, 20).ToString(), result.ToString()); // Complete intersection in the y-direction, right edge is fully covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(20, 5, 20, 30)); EXPECT_EQ(Rect(10, 10, 10, 20).ToString(), result.ToString()); // Complete intersection in the y-direction, none of the edges is fully // covered. result = Rect(10, 10, 20, 20); result.Subtract(Rect(15, 5, 1, 30)); EXPECT_EQ(Rect(10, 10, 20, 20).ToString(), result.ToString()); } TEST(RectTest, IsEmpty) { EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty()); EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty()); EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty()); EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty()); EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty()); EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty()); EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty()); EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty()); } TEST(RectTest, SplitVertically) { Rect left_half, right_half; // Splitting when origin is (0, 0). Rect(0, 0, 20, 20).SplitVertically(&left_half, &right_half); EXPECT_TRUE(left_half == Rect(0, 0, 10, 20)); EXPECT_TRUE(right_half == Rect(10, 0, 10, 20)); // Splitting when origin is arbitrary. Rect(10, 10, 20, 10).SplitVertically(&left_half, &right_half); EXPECT_TRUE(left_half == Rect(10, 10, 10, 10)); EXPECT_TRUE(right_half == Rect(20, 10, 10, 10)); // Splitting a rectangle of zero width. Rect(10, 10, 0, 10).SplitVertically(&left_half, &right_half); EXPECT_TRUE(left_half == Rect(10, 10, 0, 10)); EXPECT_TRUE(right_half == Rect(10, 10, 0, 10)); // Splitting a rectangle of odd width. Rect(10, 10, 5, 10).SplitVertically(&left_half, &right_half); EXPECT_TRUE(left_half == Rect(10, 10, 2, 10)); EXPECT_TRUE(right_half == Rect(12, 10, 3, 10)); } TEST(RectTest, CenterPoint) { Point center; // When origin is (0, 0). center = Rect(0, 0, 20, 20).CenterPoint(); EXPECT_TRUE(center == Point(10, 10)); // When origin is even. center = Rect(10, 10, 20, 20).CenterPoint(); EXPECT_TRUE(center == Point(20, 20)); // When origin is odd. center = Rect(11, 11, 20, 20).CenterPoint(); EXPECT_TRUE(center == Point(21, 21)); // When 0 width or height. center = Rect(10, 10, 0, 20).CenterPoint(); EXPECT_TRUE(center == Point(10, 20)); center = Rect(10, 10, 20, 0).CenterPoint(); EXPECT_TRUE(center == Point(20, 10)); // When an odd size. center = Rect(10, 10, 21, 21).CenterPoint(); EXPECT_TRUE(center == Point(20, 20)); // When an odd size and position. center = Rect(11, 11, 21, 21).CenterPoint(); EXPECT_TRUE(center == Point(21, 21)); } TEST(RectTest, CenterPointF) { PointF center; // When origin is (0, 0). center = RectF(0, 0, 20, 20).CenterPoint(); EXPECT_TRUE(center == PointF(10, 10)); // When origin is even. center = RectF(10, 10, 20, 20).CenterPoint(); EXPECT_TRUE(center == PointF(20, 20)); // When origin is odd. center = RectF(11, 11, 20, 20).CenterPoint(); EXPECT_TRUE(center == PointF(21, 21)); // When 0 width or height. center = RectF(10, 10, 0, 20).CenterPoint(); EXPECT_TRUE(center == PointF(10, 20)); center = RectF(10, 10, 20, 0).CenterPoint(); EXPECT_TRUE(center == PointF(20, 10)); // When an odd size. center = RectF(10, 10, 21, 21).CenterPoint(); EXPECT_TRUE(center == PointF(20.5f, 20.5f)); // When an odd size and position. center = RectF(11, 11, 21, 21).CenterPoint(); EXPECT_TRUE(center == PointF(21.5f, 21.5f)); } TEST(RectTest, SharesEdgeWith) { Rect r(2, 3, 4, 5); // Must be non-overlapping EXPECT_FALSE(r.SharesEdgeWith(r)); Rect just_above(2, 1, 4, 2); Rect just_below(2, 8, 4, 2); Rect just_left(0, 3, 2, 5); Rect just_right(6, 3, 2, 5); EXPECT_TRUE(r.SharesEdgeWith(just_above)); EXPECT_TRUE(r.SharesEdgeWith(just_below)); EXPECT_TRUE(r.SharesEdgeWith(just_left)); EXPECT_TRUE(r.SharesEdgeWith(just_right)); // Wrong placement Rect same_height_no_edge(0, 0, 1, 5); Rect same_width_no_edge(0, 0, 4, 1); EXPECT_FALSE(r.SharesEdgeWith(same_height_no_edge)); EXPECT_FALSE(r.SharesEdgeWith(same_width_no_edge)); Rect just_above_no_edge(2, 1, 5, 2); // too wide Rect just_below_no_edge(2, 8, 3, 2); // too narrow Rect just_left_no_edge(0, 3, 2, 6); // too tall Rect just_right_no_edge(6, 3, 2, 4); // too short EXPECT_FALSE(r.SharesEdgeWith(just_above_no_edge)); EXPECT_FALSE(r.SharesEdgeWith(just_below_no_edge)); EXPECT_FALSE(r.SharesEdgeWith(just_left_no_edge)); EXPECT_FALSE(r.SharesEdgeWith(just_right_no_edge)); } TEST(RectTest, SkiaRectConversions) { Rect isrc(10, 20, 30, 40); RectF fsrc(10.5f, 20.5f, 30.5f, 40.5f); SkIRect skirect = RectToSkIRect(isrc); EXPECT_EQ(isrc.ToString(), SkIRectToRect(skirect).ToString()); SkRect skrect = RectToSkRect(isrc); EXPECT_EQ(gfx::RectF(isrc).ToString(), SkRectToRectF(skrect).ToString()); skrect = RectFToSkRect(fsrc); EXPECT_EQ(fsrc.ToString(), SkRectToRectF(skrect).ToString()); } // Similar to EXPECT_FLOAT_EQ, but lets NaN equal NaN #define EXPECT_FLOAT_AND_NAN_EQ(a, b) \ { if (a == a || b == b) { EXPECT_FLOAT_EQ(a, b); } } TEST(RectTest, ScaleRect) { static const struct Test { int x1; // source int y1; int w1; int h1; float scale; float x2; // target float y2; float w2; float h2; } tests[] = { { 3, 3, 3, 3, 1.5f, 4.5f, 4.5f, 4.5f, 4.5f }, { 3, 3, 3, 3, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }, { 3, 3, 3, 3, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN() }, { 3, 3, 3, 3, std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max() } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); RectF r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); RectF scaled = ScaleRect(r1, tests[i].scale); EXPECT_FLOAT_AND_NAN_EQ(r2.x(), scaled.x()); EXPECT_FLOAT_AND_NAN_EQ(r2.y(), scaled.y()); EXPECT_FLOAT_AND_NAN_EQ(r2.width(), scaled.width()); EXPECT_FLOAT_AND_NAN_EQ(r2.height(), scaled.height()); } } TEST(RectTest, ToEnclosedRect) { static const struct Test { float x1; // source float y1; float w1; float h1; int x2; // target int y2; int w2; int h2; } tests [] = { { 0.0f, 0.0f, 0.0f, 0.0f, 0, 0, 0, 0 }, { -1.5f, -1.5f, 3.0f, 3.0f, -1, -1, 2, 2 }, { -1.5f, -1.5f, 3.5f, 3.5f, -1, -1, 3, 3 }, { std::numeric_limits::max(), std::numeric_limits::max(), 2.0f, 2.0f, std::numeric_limits::max(), std::numeric_limits::max(), 0, 0 }, { 0.0f, 0.0f, std::numeric_limits::max(), std::numeric_limits::max(), 0, 0, std::numeric_limits::max(), std::numeric_limits::max() }, { 20000.5f, 20000.5f, 0.5f, 0.5f, 20001, 20001, 0, 0 }, { std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 0, 0, 0, 0 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect enclosed = ToEnclosedRect(r1); EXPECT_FLOAT_AND_NAN_EQ(r2.x(), enclosed.x()); EXPECT_FLOAT_AND_NAN_EQ(r2.y(), enclosed.y()); EXPECT_FLOAT_AND_NAN_EQ(r2.width(), enclosed.width()); EXPECT_FLOAT_AND_NAN_EQ(r2.height(), enclosed.height()); } } TEST(RectTest, ToEnclosingRect) { static const struct Test { float x1; // source float y1; float w1; float h1; int x2; // target int y2; int w2; int h2; } tests [] = { { 0.0f, 0.0f, 0.0f, 0.0f, 0, 0, 0, 0 }, { 5.5f, 5.5f, 0.0f, 0.0f, 5, 5, 0, 0 }, { -1.5f, -1.5f, 3.0f, 3.0f, -2, -2, 4, 4 }, { -1.5f, -1.5f, 3.5f, 3.5f, -2, -2, 4, 4 }, { std::numeric_limits::max(), std::numeric_limits::max(), 2.0f, 2.0f, std::numeric_limits::max(), std::numeric_limits::max(), 0, 0 }, { 0.0f, 0.0f, std::numeric_limits::max(), std::numeric_limits::max(), 0, 0, std::numeric_limits::max(), std::numeric_limits::max() }, { 20000.5f, 20000.5f, 0.5f, 0.5f, 20000, 20000, 1, 1 }, { std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 0, 0, 0, 0 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect enclosed = ToEnclosingRect(r1); EXPECT_FLOAT_AND_NAN_EQ(r2.x(), enclosed.x()); EXPECT_FLOAT_AND_NAN_EQ(r2.y(), enclosed.y()); EXPECT_FLOAT_AND_NAN_EQ(r2.width(), enclosed.width()); EXPECT_FLOAT_AND_NAN_EQ(r2.height(), enclosed.height()); } } TEST(RectTest, ToNearestRect) { Rect rect; EXPECT_EQ(rect.ToString(), ToNearestRect(RectF(rect)).ToString()); rect = Rect(-1, -1, 3, 3); EXPECT_EQ(rect.ToString(), ToNearestRect(RectF(rect)).ToString()); RectF rectf(-1.00001f, -0.999999f, 3.0000001f, 2.999999f); EXPECT_EQ(rect.ToString(), ToNearestRect(rectf).ToString()); } TEST(RectTest, ToFlooredRect) { static const struct Test { float x1; // source float y1; float w1; float h1; int x2; // target int y2; int w2; int h2; } tests [] = { { 0.0f, 0.0f, 0.0f, 0.0f, 0, 0, 0, 0 }, { -1.5f, -1.5f, 3.0f, 3.0f, -2, -2, 3, 3 }, { -1.5f, -1.5f, 3.5f, 3.5f, -2, -2, 3, 3 }, { 20000.5f, 20000.5f, 0.5f, 0.5f, 20000, 20000, 0, 0 }, }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { RectF r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1); Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2); Rect floored = ToFlooredRectDeprecated(r1); EXPECT_FLOAT_EQ(r2.x(), floored.x()); EXPECT_FLOAT_EQ(r2.y(), floored.y()); EXPECT_FLOAT_EQ(r2.width(), floored.width()); EXPECT_FLOAT_EQ(r2.height(), floored.height()); } } TEST(RectTest, ScaleToEnclosedRect) { static const struct Test { Rect input_rect; float input_scale; Rect expected_rect; } tests[] = { { Rect(), 5.f, Rect(), }, { Rect(1, 1, 1, 1), 5.f, Rect(5, 5, 5, 5), }, { Rect(-1, -1, 0, 0), 5.f, Rect(-5, -5, 0, 0), }, { Rect(1, -1, 0, 1), 5.f, Rect(5, -5, 0, 5), }, { Rect(-1, 1, 1, 0), 5.f, Rect(-5, 5, 5, 0), }, { Rect(1, 2, 3, 4), 1.5f, Rect(2, 3, 4, 6), }, { Rect(-1, -2, 0, 0), 1.5f, Rect(-1, -3, 0, 0), } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect result = ScaleToEnclosedRect(tests[i].input_rect, tests[i].input_scale); EXPECT_EQ(tests[i].expected_rect.ToString(), result.ToString()); } } TEST(RectTest, ScaleToEnclosingRect) { static const struct Test { Rect input_rect; float input_scale; Rect expected_rect; } tests[] = { { Rect(), 5.f, Rect(), }, { Rect(1, 1, 1, 1), 5.f, Rect(5, 5, 5, 5), }, { Rect(-1, -1, 0, 0), 5.f, Rect(-5, -5, 0, 0), }, { Rect(1, -1, 0, 1), 5.f, Rect(5, -5, 0, 5), }, { Rect(-1, 1, 1, 0), 5.f, Rect(-5, 5, 5, 0), }, { Rect(1, 2, 3, 4), 1.5f, Rect(1, 3, 5, 6), }, { Rect(-1, -2, 0, 0), 1.5f, Rect(-2, -3, 0, 0), } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) { Rect result = ScaleToEnclosingRect(tests[i].input_rect, tests[i].input_scale); EXPECT_EQ(tests[i].expected_rect.ToString(), result.ToString()); } } #if defined(OS_WIN) TEST(RectTest, ConstructAndAssign) { const RECT rect_1 = { 0, 0, 10, 10 }; const RECT rect_2 = { 0, 0, -10, -10 }; Rect test1(rect_1); Rect test2(rect_2); } #endif TEST(RectTest, ToRectF) { // Check that implicit conversion from integer to float compiles. Rect a(10, 20, 30, 40); RectF b(10, 20, 30, 40); RectF intersect = IntersectRects(a, b); EXPECT_EQ(b.ToString(), intersect.ToString()); EXPECT_EQ(a, b); EXPECT_EQ(b, a); } TEST(RectTest, BoundingRect) { struct { Point a; Point b; Rect expected; } int_tests[] = { // If point B dominates A, then A should be the origin. { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) }, { Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0) }, { Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3) }, { Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3) }, // If point A dominates B, then B should be the origin. { Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) }, { Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0) }, { Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3) }, { Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3) }, // If neither point dominates, then the origin is a combination of the two. { Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2) }, { Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2) }, { Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10) }, }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(int_tests); ++i) { Rect actual = BoundingRect(int_tests[i].a, int_tests[i].b); EXPECT_EQ(int_tests[i].expected.ToString(), actual.ToString()); } struct { PointF a; PointF b; RectF expected; } float_tests[] = { // If point B dominates A, then A should be the origin. { PointF(4.2f, 6.8f), PointF(4.2f, 6.8f), RectF(4.2f, 6.8f, 0, 0) }, { PointF(4.2f, 6.8f), PointF(8.5f, 6.8f), RectF(4.2f, 6.8f, 4.3f, 0) }, { PointF(4.2f, 6.8f), PointF(4.2f, 9.3f), RectF(4.2f, 6.8f, 0, 2.5f) }, { PointF(4.2f, 6.8f), PointF(8.5f, 9.3f), RectF(4.2f, 6.8f, 4.3f, 2.5f) }, // If point A dominates B, then B should be the origin. { PointF(4.2f, 6.8f), PointF(4.2f, 6.8f), RectF(4.2f, 6.8f, 0, 0) }, { PointF(8.5f, 6.8f), PointF(4.2f, 6.8f), RectF(4.2f, 6.8f, 4.3f, 0) }, { PointF(4.2f, 9.3f), PointF(4.2f, 6.8f), RectF(4.2f, 6.8f, 0, 2.5f) }, { PointF(8.5f, 9.3f), PointF(4.2f, 6.8f), RectF(4.2f, 6.8f, 4.3f, 2.5f) }, // If neither point dominates, then the origin is a combination of the two. { PointF(4.2f, 6.8f), PointF(6.8f, 4.2f), RectF(4.2f, 4.2f, 2.6f, 2.6f) }, { PointF(-4.2f, -6.8f), PointF(-6.8f, -4.2f), RectF(-6.8f, -6.8f, 2.6f, 2.6f) }, { PointF(-4.2f, 6.8f), PointF(6.8f, -4.2f), RectF(-4.2f, -4.2f, 11.0f, 11.0f) } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(float_tests); ++i) { RectF actual = BoundingRect(float_tests[i].a, float_tests[i].b); EXPECT_EQ(float_tests[i].expected.ToString(), actual.ToString()); } } TEST(RectTest, IsExpressibleAsRect) { EXPECT_TRUE(RectF().IsExpressibleAsRect()); float min = std::numeric_limits::min(); float max = std::numeric_limits::max(); float infinity = std::numeric_limits::infinity(); EXPECT_TRUE(RectF( min + 200, min + 200, max - 200, max - 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF( min - 200, min + 200, max + 200, max + 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF( min + 200 , min - 200, max + 200, max + 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF( min + 200, min + 200, max + 200, max - 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF( min + 200, min + 200, max - 200, max + 200).IsExpressibleAsRect()); EXPECT_TRUE(RectF(0, 0, max - 200, max - 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF(200, 0, max + 200, max - 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, 200, max - 200, max + 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, 0, max + 200, max - 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, 0, max - 200, max + 200).IsExpressibleAsRect()); EXPECT_FALSE(RectF(infinity, 0, 1, 1).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, infinity, 1, 1).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, 0, infinity, 1).IsExpressibleAsRect()); EXPECT_FALSE(RectF(0, 0, 1, infinity).IsExpressibleAsRect()); } TEST(RectTest, Offset) { Rect i(1, 2, 3, 4); EXPECT_EQ(Rect(2, 1, 3, 4).ToString(), (i + Vector2d(1, -1)).ToString()); EXPECT_EQ(Rect(2, 1, 3, 4).ToString(), (Vector2d(1, -1) + i).ToString()); i += Vector2d(1, -1); EXPECT_EQ(Rect(2, 1, 3, 4).ToString(), i.ToString()); EXPECT_EQ(Rect(1, 2, 3, 4).ToString(), (i - Vector2d(1, -1)).ToString()); i -= Vector2d(1, -1); EXPECT_EQ(Rect(1, 2, 3, 4).ToString(), i.ToString()); RectF f(1.1f, 2.2f, 3.3f, 4.4f); EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f).ToString(), (f + Vector2dF(1.1f, -1.1f)).ToString()); EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f).ToString(), (Vector2dF(1.1f, -1.1f) + f).ToString()); f += Vector2dF(1.1f, -1.1f); EXPECT_EQ(RectF(2.2f, 1.1f, 3.3f, 4.4f).ToString(), f.ToString()); EXPECT_EQ(RectF(1.1f, 2.2f, 3.3f, 4.4f).ToString(), (f - Vector2dF(1.1f, -1.1f)).ToString()); f -= Vector2dF(1.1f, -1.1f); EXPECT_EQ(RectF(1.1f, 2.2f, 3.3f, 4.4f).ToString(), f.ToString()); } TEST(RectTest, Corners) { Rect i(1, 2, 3, 4); RectF f(1.1f, 2.1f, 3.1f, 4.1f); EXPECT_EQ(Point(1, 2).ToString(), i.origin().ToString()); EXPECT_EQ(Point(4, 2).ToString(), i.top_right().ToString()); EXPECT_EQ(Point(1, 6).ToString(), i.bottom_left().ToString()); EXPECT_EQ(Point(4, 6).ToString(), i.bottom_right().ToString()); EXPECT_EQ(PointF(1.1f, 2.1f).ToString(), f.origin().ToString()); EXPECT_EQ(PointF(4.2f, 2.1f).ToString(), f.top_right().ToString()); EXPECT_EQ(PointF(1.1f, 6.2f).ToString(), f.bottom_left().ToString()); EXPECT_EQ(PointF(4.2f, 6.2f).ToString(), f.bottom_right().ToString()); } TEST(RectTest, ManhattanDistanceToPoint) { Rect i(1, 2, 3, 4); EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(1, 2))); EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(4, 6))); EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(2, 4))); EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(0, 0))); EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(2, 0))); EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 0))); EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(5, 4))); EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 8))); EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(3, 8))); EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(0, 7))); EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(0, 3))); RectF f(1.1f, 2.1f, 3.1f, 4.1f); EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(1.1f, 2.1f))); EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(4.2f, 6.f))); EXPECT_FLOAT_EQ(0.f, f.ManhattanDistanceToPoint(PointF(2.f, 4.f))); EXPECT_FLOAT_EQ(3.2f, f.ManhattanDistanceToPoint(PointF(0.f, 0.f))); EXPECT_FLOAT_EQ(2.1f, f.ManhattanDistanceToPoint(PointF(2.f, 0.f))); EXPECT_FLOAT_EQ(2.9f, f.ManhattanDistanceToPoint(PointF(5.f, 0.f))); EXPECT_FLOAT_EQ(.8f, f.ManhattanDistanceToPoint(PointF(5.f, 4.f))); EXPECT_FLOAT_EQ(2.6f, f.ManhattanDistanceToPoint(PointF(5.f, 8.f))); EXPECT_FLOAT_EQ(1.8f, f.ManhattanDistanceToPoint(PointF(3.f, 8.f))); EXPECT_FLOAT_EQ(1.9f, f.ManhattanDistanceToPoint(PointF(0.f, 7.f))); EXPECT_FLOAT_EQ(1.1f, f.ManhattanDistanceToPoint(PointF(0.f, 3.f))); } } // namespace gfx