// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/render_text_harfbuzz.h" #include #include #include "base/i18n/bidi_line_iterator.h" #include "base/i18n/break_iterator.h" #include "base/i18n/char_iterator.h" #include "base/macros.h" #include "base/profiler/scoped_tracker.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "base/trace_event/trace_event.h" #include "build/build_config.h" #include "third_party/harfbuzz-ng/src/hb.h" #include "third_party/icu/source/common/unicode/ubidi.h" #include "third_party/icu/source/common/unicode/utf16.h" #include "third_party/skia/include/core/SkColor.h" #include "third_party/skia/include/core/SkTypeface.h" #include "ui/gfx/canvas.h" #include "ui/gfx/font.h" #include "ui/gfx/font_fallback.h" #include "ui/gfx/font_render_params.h" #include "ui/gfx/geometry/safe_integer_conversions.h" #include "ui/gfx/harfbuzz_font_skia.h" #include "ui/gfx/range/range_f.h" #include "ui/gfx/skia_util.h" #include "ui/gfx/text_utils.h" #include "ui/gfx/utf16_indexing.h" #if defined(OS_WIN) #include "ui/gfx/font_fallback_win.h" #endif namespace gfx { namespace { // Text length limit. Longer strings are slow and not fully tested. const size_t kMaxTextLength = 10000; // The maximum number of scripts a Unicode character can belong to. This value // is arbitrarily chosen to be a good limit because it is unlikely for a single // character to belong to more scripts. const size_t kMaxScripts = 5; // Returns true if characters of |block_code| may trigger font fallback. bool IsUnusualBlockCode(UBlockCode block_code) { return block_code == UBLOCK_GEOMETRIC_SHAPES || block_code == UBLOCK_MISCELLANEOUS_SYMBOLS; } bool IsBracket(UChar32 character) { static const char kBrackets[] = { '(', ')', '{', '}', '<', '>', }; static const char* kBracketsEnd = kBrackets + arraysize(kBrackets); return std::find(kBrackets, kBracketsEnd, character) != kBracketsEnd; } // If the given scripts match, returns the one that isn't USCRIPT_INHERITED, // i.e. the more specific one. Otherwise returns USCRIPT_INVALID_CODE. This // function is used to split runs between characters of different script codes, // unless either character has USCRIPT_INHERITED property. See crbug.com/448909. UScriptCode ScriptIntersect(UScriptCode first, UScriptCode second) { if (first == second || second == USCRIPT_INHERITED) return first; if (first == USCRIPT_INHERITED) return second; return USCRIPT_INVALID_CODE; } // Writes the script and the script extensions of the character with the // Unicode |codepoint|. Returns the number of written scripts. int GetScriptExtensions(UChar32 codepoint, UScriptCode* scripts) { UErrorCode icu_error = U_ZERO_ERROR; // ICU documentation incorrectly states that the result of // |uscript_getScriptExtensions| will contain the regular script property. // Write the character's script property to the first element. scripts[0] = uscript_getScript(codepoint, &icu_error); if (U_FAILURE(icu_error)) return 0; // Fill the rest of |scripts| with the extensions. int count = uscript_getScriptExtensions(codepoint, scripts + 1, kMaxScripts - 1, &icu_error); if (U_FAILURE(icu_error)) count = 0; return count + 1; } // Intersects the script extensions set of |codepoint| with |result| and writes // to |result|, reading and updating |result_size|. void ScriptSetIntersect(UChar32 codepoint, UScriptCode* result, size_t* result_size) { UScriptCode scripts[kMaxScripts] = { USCRIPT_INVALID_CODE }; int count = GetScriptExtensions(codepoint, scripts); size_t out_size = 0; for (size_t i = 0; i < *result_size; ++i) { for (int j = 0; j < count; ++j) { UScriptCode intersection = ScriptIntersect(result[i], scripts[j]); if (intersection != USCRIPT_INVALID_CODE) { result[out_size++] = intersection; break; } } } *result_size = out_size; } // Returns true if |first_char| and |current_char| both have "COMMON" script // property but only one of them is an ASCII character. By doing this ASCII // characters will be put into a separate run and be rendered using its default // font. See crbug.com/530021 and crbug.com/533721 for more details. bool AsciiBreak(UChar32 first_char, UChar32 current_char) { if (isascii(first_char) == isascii(current_char)) return false; size_t scripts_size = 1; UScriptCode scripts[kMaxScripts] = { USCRIPT_COMMON }; ScriptSetIntersect(first_char, scripts, &scripts_size); if (scripts_size == 0) return false; ScriptSetIntersect(current_char, scripts, &scripts_size); return scripts_size != 0; } // Returns the boundary between a special and a regular character. Special // characters are brackets or characters that satisfy |IsUnusualBlockCode|. size_t FindRunBreakingCharacter(const base::string16& text, size_t run_start, size_t run_break) { const int32_t run_length = static_cast(run_break - run_start); base::i18n::UTF16CharIterator iter(text.c_str() + run_start, run_length); const UChar32 first_char = iter.get(); // The newline character should form a single run so that the line breaker // can handle them easily. if (first_char == '\n') return run_start + 1; const UBlockCode first_block = ublock_getCode(first_char); const bool first_block_unusual = IsUnusualBlockCode(first_block); const bool first_bracket = IsBracket(first_char); while (iter.Advance() && iter.array_pos() < run_length) { const UChar32 current_char = iter.get(); const UBlockCode current_block = ublock_getCode(current_char); const bool block_break = current_block != first_block && (first_block_unusual || IsUnusualBlockCode(current_block)); if (block_break || current_char == '\n' || first_bracket != IsBracket(current_char) || AsciiBreak(first_char, current_char)) { return run_start + iter.array_pos(); } } return run_break; } // Find the longest sequence of characters from 0 and up to |length| that // have at least one common UScriptCode value. Writes the common script value to // |script| and returns the length of the sequence. Takes the characters' script // extensions into account. http://www.unicode.org/reports/tr24/#ScriptX // // Consider 3 characters with the script values {Kana}, {Hira, Kana}, {Kana}. // Without script extensions only the first script in each set would be taken // into account, resulting in 3 runs where 1 would be enough. // TODO(ckocagil): Write a unit test for the case above. int ScriptInterval(const base::string16& text, size_t start, size_t length, UScriptCode* script) { DCHECK_GT(length, 0U); UScriptCode scripts[kMaxScripts] = { USCRIPT_INVALID_CODE }; base::i18n::UTF16CharIterator char_iterator(text.c_str() + start, length); size_t scripts_size = GetScriptExtensions(char_iterator.get(), scripts); *script = scripts[0]; while (char_iterator.Advance()) { // Special handling to merge white space into the previous run. if (u_isUWhiteSpace(char_iterator.get())) continue; ScriptSetIntersect(char_iterator.get(), scripts, &scripts_size); if (scripts_size == 0U) return char_iterator.array_pos(); *script = scripts[0]; } return length; } // A port of hb_icu_script_to_script because harfbuzz on CrOS is built without // hb-icu. See http://crbug.com/356929 inline hb_script_t ICUScriptToHBScript(UScriptCode script) { if (script == USCRIPT_INVALID_CODE) return HB_SCRIPT_INVALID; return hb_script_from_string(uscript_getShortName(script), -1); } // Helper template function for |TextRunHarfBuzz::GetClusterAt()|. |Iterator| // can be a forward or reverse iterator type depending on the text direction. template void GetClusterAtImpl(size_t pos, Range range, Iterator elements_begin, Iterator elements_end, bool reversed, Range* chars, Range* glyphs) { Iterator element = std::upper_bound(elements_begin, elements_end, pos); chars->set_end(element == elements_end ? range.end() : *element); glyphs->set_end(reversed ? elements_end - element : element - elements_begin); DCHECK(element != elements_begin); while (--element != elements_begin && *element == *(element - 1)); chars->set_start(*element); glyphs->set_start( reversed ? elements_end - element : element - elements_begin); if (reversed) *glyphs = Range(glyphs->end(), glyphs->start()); DCHECK(!chars->is_reversed()); DCHECK(!chars->is_empty()); DCHECK(!glyphs->is_reversed()); DCHECK(!glyphs->is_empty()); } // Internal class to generate Line structures. If |multiline| is true, the text // is broken into lines at |words| boundaries such that each line is no longer // than |max_width|. If |multiline| is false, only outputs a single Line from // the given runs. |min_baseline| and |min_height| are the minimum baseline and // height for each line. // TODO(ckocagil): Expose the interface of this class in the header and test // this class directly. class HarfBuzzLineBreaker { public: HarfBuzzLineBreaker(size_t max_width, int min_baseline, float min_height, WordWrapBehavior word_wrap_behavior, const base::string16& text, const BreakList* words, const internal::TextRunList& run_list) : max_width_((max_width == 0) ? SK_ScalarMax : SkIntToScalar(max_width)), min_baseline_(min_baseline), min_height_(min_height), word_wrap_behavior_(word_wrap_behavior), text_(text), words_(words), run_list_(run_list), max_descent_(0), max_ascent_(0), text_x_(0), available_width_(max_width_) { AdvanceLine(); } // Constructs a single line for |text_| using |run_list_|. void ConstructSingleLine() { for (size_t i = 0; i < run_list_.size(); i++) { const internal::TextRunHarfBuzz& run = *(run_list_.runs()[i]); internal::LineSegment segment; segment.run = i; segment.char_range = run.range; segment.x_range = RangeF(SkScalarToFloat(text_x_), SkScalarToFloat(text_x_) + run.width); AddLineSegment(segment); } } // Constructs multiple lines for |text_| based on words iteration approach. void ConstructMultiLines() { DCHECK(words_); for (auto iter = words_->breaks().begin(); iter != words_->breaks().end(); iter++) { const Range word_range = words_->GetRange(iter); std::vector word_segments; SkScalar word_width = GetWordWidth(word_range, &word_segments); // If the last word is '\n', we should advance a new line after adding // the word to the current line. bool new_line = false; if (!word_segments.empty() && text_[word_segments.back().char_range.start()] == '\n') { new_line = true; word_width -= word_segments.back().width(); word_segments.pop_back(); } // If the word is not the first word in the line and it can't fit into // the current line, advance a new line. if (word_width > available_width_ && available_width_ != max_width_) AdvanceLine(); if (!word_segments.empty()) AddWordToLine(word_segments); if (new_line) AdvanceLine(); } } // Finishes line breaking and outputs the results. Can be called at most once. void FinalizeLines(std::vector* lines, SizeF* size) { DCHECK(!lines_.empty()); // Add an empty line to finish the line size calculation and remove it. AdvanceLine(); lines_.pop_back(); *size = total_size_; lines->swap(lines_); } private: // A (line index, segment index) pair that specifies a segment in |lines_|. typedef std::pair SegmentHandle; internal::LineSegment* SegmentFromHandle(const SegmentHandle& handle) { return &lines_[handle.first].segments[handle.second]; } // Finishes the size calculations of the last Line in |lines_|. Adds a new // Line to the back of |lines_|. void AdvanceLine() { if (!lines_.empty()) { internal::Line* line = &lines_.back(); std::sort(line->segments.begin(), line->segments.end(), [this](const internal::LineSegment& s1, const internal::LineSegment& s2) -> bool { return run_list_.logical_to_visual(s1.run) < run_list_.logical_to_visual(s2.run); }); line->size.set_height(std::max(min_height_, max_descent_ + max_ascent_)); line->baseline = std::max(min_baseline_, SkScalarRoundToInt(max_ascent_)); line->preceding_heights = std::ceil(total_size_.height()); total_size_.set_height(total_size_.height() + line->size.height()); total_size_.set_width(std::max(total_size_.width(), line->size.width())); } max_descent_ = 0; max_ascent_ = 0; available_width_ = max_width_; lines_.push_back(internal::Line()); } // Adds word to the current line. A word may contain multiple segments. If the // word is the first word in line and its width exceeds |available_width_|, // ignore/truncate/wrap it according to |word_wrap_behavior_|. void AddWordToLine(const std::vector& word_segments) { DCHECK(!lines_.empty()); DCHECK(!word_segments.empty()); bool has_truncated = false; for (const internal::LineSegment& segment : word_segments) { if (has_truncated) break; if (segment.width() <= available_width_ || word_wrap_behavior_ == IGNORE_LONG_WORDS) { AddLineSegment(segment); } else { DCHECK(word_wrap_behavior_ == TRUNCATE_LONG_WORDS || word_wrap_behavior_ == WRAP_LONG_WORDS); has_truncated = (word_wrap_behavior_ == TRUNCATE_LONG_WORDS); const internal::TextRunHarfBuzz& run = *(run_list_.runs()[segment.run]); internal::LineSegment remaining_segment = segment; while (!remaining_segment.char_range.is_empty()) { size_t cutoff_pos = GetCutoffPos(remaining_segment); SkScalar width = run.GetGlyphWidthForCharRange( Range(remaining_segment.char_range.start(), cutoff_pos)); if (width > 0) { internal::LineSegment cut_segment; cut_segment.run = remaining_segment.run; cut_segment.char_range = Range(remaining_segment.char_range.start(), cutoff_pos); cut_segment.x_range = RangeF(SkScalarToFloat(text_x_), SkScalarToFloat(text_x_ + width)); AddLineSegment(cut_segment); // Updates old segment range. remaining_segment.char_range.set_start(cutoff_pos); remaining_segment.x_range.set_start(SkScalarToFloat(text_x_)); } if (has_truncated) break; if (!remaining_segment.char_range.is_empty()) AdvanceLine(); } } } } // Add a line segment to the current line. Note that, in order to keep the // visual order correct for ltr and rtl language, we need to merge segments // that belong to the same run. void AddLineSegment(const internal::LineSegment& segment) { DCHECK(!lines_.empty()); internal::Line* line = &lines_.back(); const internal::TextRunHarfBuzz& run = *(run_list_.runs()[segment.run]); if (!line->segments.empty()) { internal::LineSegment& last_segment = line->segments.back(); // Merge segments that belong to the same run. if (last_segment.run == segment.run) { DCHECK_EQ(last_segment.char_range.end(), segment.char_range.start()); DCHECK_LE( std::abs(last_segment.x_range.end() - segment.x_range.start()), std::numeric_limits::epsilon()); last_segment.char_range.set_end(segment.char_range.end()); last_segment.x_range.set_end(SkScalarToFloat(text_x_) + segment.width()); if (run.is_rtl && last_segment.char_range.end() == run.range.end()) UpdateRTLSegmentRanges(); line->size.set_width(line->size.width() + segment.width()); text_x_ += segment.width(); available_width_ -= segment.width(); return; } } line->segments.push_back(segment); SkPaint paint; paint.setTypeface(run.skia_face.get()); paint.setTextSize(SkIntToScalar(run.font_size)); paint.setAntiAlias(run.render_params.antialiasing); SkPaint::FontMetrics metrics; paint.getFontMetrics(&metrics); line->size.set_width(line->size.width() + segment.width()); // TODO(dschuyler): Account for stylized baselines in string sizing. max_descent_ = std::max(max_descent_, metrics.fDescent); // fAscent is always negative. max_ascent_ = std::max(max_ascent_, -metrics.fAscent); if (run.is_rtl) { rtl_segments_.push_back( SegmentHandle(lines_.size() - 1, line->segments.size() - 1)); // If this is the last segment of an RTL run, reprocess the text-space x // ranges of all segments from the run. if (segment.char_range.end() == run.range.end()) UpdateRTLSegmentRanges(); } text_x_ += segment.width(); available_width_ -= segment.width(); } // Finds the end position |end_pos| in |segment| where the preceding width is // no larger than |available_width_|. size_t GetCutoffPos(const internal::LineSegment& segment) const { DCHECK(!segment.char_range.is_empty()); const internal::TextRunHarfBuzz& run = *(run_list_.runs()[segment.run]); size_t end_pos = segment.char_range.start(); SkScalar width = 0; while (end_pos < segment.char_range.end()) { const SkScalar char_width = run.GetGlyphWidthForCharRange(Range(end_pos, end_pos + 1)); if (width + char_width > available_width_) break; width += char_width; end_pos++; } const size_t valid_end_pos = std::max( segment.char_range.start(), static_cast(FindValidBoundaryBefore(text_, end_pos))); if (end_pos != valid_end_pos) { end_pos = valid_end_pos; width = run.GetGlyphWidthForCharRange( Range(segment.char_range.start(), end_pos)); } // |max_width_| might be smaller than a single character. In this case we // need to put at least one character in the line. Note that, we should // not separate surrogate pair or combining characters. // See RenderTextTest.Multiline_MinWidth for an example. if (width == 0 && available_width_ == max_width_) { end_pos = std::min( segment.char_range.end(), static_cast(FindValidBoundaryAfter(text_, end_pos + 1))); } return end_pos; } // Gets the glyph width for |word_range|, and splits the |word| into different // segments based on its runs. SkScalar GetWordWidth(const Range& word_range, std::vector* segments) const { DCHECK(words_); if (word_range.is_empty() || segments == nullptr) return 0; size_t run_start_index = run_list_.GetRunIndexAt(word_range.start()); size_t run_end_index = run_list_.GetRunIndexAt(word_range.end() - 1); SkScalar width = 0; for (size_t i = run_start_index; i <= run_end_index; i++) { const internal::TextRunHarfBuzz& run = *(run_list_.runs()[i]); const Range char_range = run.range.Intersect(word_range); DCHECK(!char_range.is_empty()); const SkScalar char_width = run.GetGlyphWidthForCharRange(char_range); width += char_width; internal::LineSegment segment; segment.run = i; segment.char_range = char_range; segment.x_range = RangeF(SkScalarToFloat(text_x_ + width - char_width), SkScalarToFloat(text_x_ + width)); segments->push_back(segment); } return width; } // RTL runs are broken in logical order but displayed in visual order. To find // the text-space coordinate (where it would fall in a single-line text) // |x_range| of RTL segments, segment widths are applied in reverse order. // e.g. {[5, 10], [10, 40]} will become {[35, 40], [5, 35]}. void UpdateRTLSegmentRanges() { if (rtl_segments_.empty()) return; float x = SegmentFromHandle(rtl_segments_[0])->x_range.start(); for (size_t i = rtl_segments_.size(); i > 0; --i) { internal::LineSegment* segment = SegmentFromHandle(rtl_segments_[i - 1]); const float segment_width = segment->width(); segment->x_range = RangeF(x, x + segment_width); x += segment_width; } rtl_segments_.clear(); } const SkScalar max_width_; const int min_baseline_; const float min_height_; const WordWrapBehavior word_wrap_behavior_; const base::string16& text_; const BreakList* const words_; const internal::TextRunList& run_list_; // Stores the resulting lines. std::vector lines_; float max_descent_; float max_ascent_; // Text space x coordinates of the next segment to be added. SkScalar text_x_; // Stores available width in the current line. SkScalar available_width_; // Size of the multiline text, not including the currently processed line. SizeF total_size_; // The current RTL run segments, to be applied by |UpdateRTLSegmentRanges()|. std::vector rtl_segments_; DISALLOW_COPY_AND_ASSIGN(HarfBuzzLineBreaker); }; // Function object for case insensitive string comparison. struct CaseInsensitiveCompare { bool operator() (const Font& a, const Font& b) const { return base::CompareCaseInsensitiveASCII(a.GetFontName(), b.GetFontName()) < 0; } }; } // namespace namespace internal { TextRunHarfBuzz::TextRunHarfBuzz() : width(0.0f), preceding_run_widths(0.0f), is_rtl(false), level(0), script(USCRIPT_INVALID_CODE), glyph_count(static_cast(-1)), font_size(0), baseline_offset(0), baseline_type(0), font_style(0), strike(false), diagonal_strike(false), underline(false) { } TextRunHarfBuzz::~TextRunHarfBuzz() {} Range TextRunHarfBuzz::CharRangeToGlyphRange(const Range& char_range) const { DCHECK(range.Contains(char_range)); DCHECK(!char_range.is_reversed()); DCHECK(!char_range.is_empty()); Range start_glyphs; Range end_glyphs; Range temp_range; GetClusterAt(char_range.start(), &temp_range, &start_glyphs); GetClusterAt(char_range.end() - 1, &temp_range, &end_glyphs); return is_rtl ? Range(end_glyphs.start(), start_glyphs.end()) : Range(start_glyphs.start(), end_glyphs.end()); } size_t TextRunHarfBuzz::CountMissingGlyphs() const { static const int kMissingGlyphId = 0; size_t missing = 0; for (size_t i = 0; i < glyph_count; ++i) missing += (glyphs[i] == kMissingGlyphId) ? 1 : 0; return missing; } void TextRunHarfBuzz::GetClusterAt(size_t pos, Range* chars, Range* glyphs) const { DCHECK(range.Contains(Range(pos, pos + 1))); DCHECK(chars); DCHECK(glyphs); if (glyph_count == 0) { *chars = range; *glyphs = Range(); return; } if (is_rtl) { GetClusterAtImpl(pos, range, glyph_to_char.rbegin(), glyph_to_char.rend(), true, chars, glyphs); return; } GetClusterAtImpl(pos, range, glyph_to_char.begin(), glyph_to_char.end(), false, chars, glyphs); } RangeF TextRunHarfBuzz::GetGraphemeBounds( base::i18n::BreakIterator* grapheme_iterator, size_t text_index) { DCHECK_LT(text_index, range.end()); if (glyph_count == 0) return RangeF(preceding_run_widths, preceding_run_widths + width); Range chars; Range glyphs; GetClusterAt(text_index, &chars, &glyphs); const float cluster_begin_x = positions[glyphs.start()].x(); const float cluster_end_x = glyphs.end() < glyph_count ? positions[glyphs.end()].x() : SkFloatToScalar(width); // A cluster consists of a number of code points and corresponds to a number // of glyphs that should be drawn together. A cluster can contain multiple // graphemes. In order to place the cursor at a grapheme boundary inside the // cluster, we simply divide the cluster width by the number of graphemes. if (chars.length() > 1 && grapheme_iterator) { int before = 0; int total = 0; for (size_t i = chars.start(); i < chars.end(); ++i) { if (grapheme_iterator->IsGraphemeBoundary(i)) { if (i < text_index) ++before; ++total; } } DCHECK_GT(total, 0); if (total > 1) { if (is_rtl) before = total - before - 1; DCHECK_GE(before, 0); DCHECK_LT(before, total); const int cluster_width = cluster_end_x - cluster_begin_x; const int grapheme_begin_x = cluster_begin_x + static_cast(0.5f + cluster_width * before / static_cast(total)); const int grapheme_end_x = cluster_begin_x + static_cast(0.5f + cluster_width * (before + 1) / static_cast(total)); return RangeF(preceding_run_widths + grapheme_begin_x, preceding_run_widths + grapheme_end_x); } } return RangeF(preceding_run_widths + cluster_begin_x, preceding_run_widths + cluster_end_x); } SkScalar TextRunHarfBuzz::GetGlyphWidthForCharRange( const Range& char_range) const { if (char_range.is_empty()) return 0; DCHECK(range.Contains(char_range)); Range glyph_range = CharRangeToGlyphRange(char_range); // The |glyph_range| might be empty or invalid on Windows if a multi-character // grapheme is divided into different runs (e.g., there are two font sizes or // colors for a single glyph). In this case it might cause the browser crash, // see crbug.com/526234. if (glyph_range.start() >= glyph_range.end()) { NOTREACHED() << "The glyph range is empty or invalid! Its char range: [" << char_range.start() << ", " << char_range.end() << "], and its glyph range: [" << glyph_range.start() << ", " << glyph_range.end() << "]."; return 0; } return ((glyph_range.end() == glyph_count) ? SkFloatToScalar(width) : positions[glyph_range.end()].x()) - positions[glyph_range.start()].x(); } TextRunList::TextRunList() : width_(0.0f) {} TextRunList::~TextRunList() {} void TextRunList::Reset() { runs_.clear(); width_ = 0.0f; } void TextRunList::InitIndexMap() { if (runs_.size() == 1) { visual_to_logical_ = logical_to_visual_ = std::vector(1, 0); return; } const size_t num_runs = runs_.size(); std::vector levels(num_runs); for (size_t i = 0; i < num_runs; ++i) levels[i] = runs_[i]->level; visual_to_logical_.resize(num_runs); ubidi_reorderVisual(&levels[0], num_runs, &visual_to_logical_[0]); logical_to_visual_.resize(num_runs); ubidi_reorderLogical(&levels[0], num_runs, &logical_to_visual_[0]); } void TextRunList::ComputePrecedingRunWidths() { // Precalculate run width information. width_ = 0.0f; for (size_t i = 0; i < runs_.size(); ++i) { TextRunHarfBuzz* run = runs_[visual_to_logical_[i]]; run->preceding_run_widths = width_; width_ += run->width; } } size_t TextRunList::GetRunIndexAt(size_t position) const { for (size_t i = 0; i < runs_.size(); ++i) { if (runs_[i]->range.start() <= position && runs_[i]->range.end() > position) return i; } return runs_.size(); } } // namespace internal RenderTextHarfBuzz::RenderTextHarfBuzz() : RenderText(), update_layout_run_list_(false), update_display_run_list_(false), update_grapheme_iterator_(false), update_display_text_(false), glyph_width_for_test_(0u) { set_truncate_length(kMaxTextLength); } RenderTextHarfBuzz::~RenderTextHarfBuzz() {} scoped_ptr RenderTextHarfBuzz::CreateInstanceOfSameType() const { return make_scoped_ptr(new RenderTextHarfBuzz); } bool RenderTextHarfBuzz::MultilineSupported() const { return true; } const base::string16& RenderTextHarfBuzz::GetDisplayText() { // TODO(oshima): Consider supporting eliding multi-line text. // This requires max_line support first. if (multiline() || elide_behavior() == NO_ELIDE || elide_behavior() == FADE_TAIL) { // Call UpdateDisplayText to clear |display_text_| and |text_elided_| // on the RenderText class. UpdateDisplayText(0); update_display_text_ = false; display_run_list_.reset(); return layout_text(); } EnsureLayoutRunList(); DCHECK(!update_display_text_); return text_elided() ? display_text() : layout_text(); } Size RenderTextHarfBuzz::GetStringSize() { const SizeF size_f = GetStringSizeF(); return Size(std::ceil(size_f.width()), size_f.height()); } SizeF RenderTextHarfBuzz::GetStringSizeF() { EnsureLayout(); return total_size_; } SelectionModel RenderTextHarfBuzz::FindCursorPosition(const Point& point) { EnsureLayout(); int x = ToTextPoint(point).x(); float offset = 0; size_t run_index = GetRunContainingXCoord(x, &offset); internal::TextRunList* run_list = GetRunList(); if (run_index >= run_list->size()) return EdgeSelectionModel((x < 0) ? CURSOR_LEFT : CURSOR_RIGHT); const internal::TextRunHarfBuzz& run = *run_list->runs()[run_index]; for (size_t i = 0; i < run.glyph_count; ++i) { const SkScalar end = i + 1 == run.glyph_count ? run.width : run.positions[i + 1].x(); const SkScalar middle = (end + run.positions[i].x()) / 2; if (offset < middle) { return SelectionModel(DisplayIndexToTextIndex( run.glyph_to_char[i] + (run.is_rtl ? 1 : 0)), (run.is_rtl ? CURSOR_BACKWARD : CURSOR_FORWARD)); } if (offset < end) { return SelectionModel(DisplayIndexToTextIndex( run.glyph_to_char[i] + (run.is_rtl ? 0 : 1)), (run.is_rtl ? CURSOR_FORWARD : CURSOR_BACKWARD)); } } return EdgeSelectionModel(CURSOR_RIGHT); } std::vector RenderTextHarfBuzz::GetFontSpansForTesting() { EnsureLayout(); internal::TextRunList* run_list = GetRunList(); std::vector spans; for (auto* run : run_list->runs()) { SkString family_name; run->skia_face->getFamilyName(&family_name); Font font(family_name.c_str(), run->font_size); spans.push_back(RenderText::FontSpan( font, Range(DisplayIndexToTextIndex(run->range.start()), DisplayIndexToTextIndex(run->range.end())))); } return spans; } Range RenderTextHarfBuzz::GetGlyphBounds(size_t index) { EnsureLayout(); const size_t run_index = GetRunContainingCaret(SelectionModel(index, CURSOR_FORWARD)); internal::TextRunList* run_list = GetRunList(); // Return edge bounds if the index is invalid or beyond the layout text size. if (run_index >= run_list->size()) return Range(GetStringSize().width()); const size_t layout_index = TextIndexToDisplayIndex(index); internal::TextRunHarfBuzz* run = run_list->runs()[run_index]; RangeF bounds = run->GetGraphemeBounds(GetGraphemeIterator(), layout_index); // If cursor is enabled, extend the last glyph up to the rightmost cursor // position since clients expect them to be contiguous. if (cursor_enabled() && run_index == run_list->size() - 1 && index == (run->is_rtl ? run->range.start() : run->range.end() - 1)) bounds.set_end(std::ceil(bounds.end())); return run->is_rtl ? RangeF(bounds.end(), bounds.start()).Round() : bounds.Round(); } int RenderTextHarfBuzz::GetDisplayTextBaseline() { EnsureLayout(); return lines()[0].baseline; } SelectionModel RenderTextHarfBuzz::AdjacentCharSelectionModel( const SelectionModel& selection, VisualCursorDirection direction) { DCHECK(!update_display_run_list_); internal::TextRunList* run_list = GetRunList(); internal::TextRunHarfBuzz* run; size_t run_index = GetRunContainingCaret(selection); if (run_index >= run_list->size()) { // The cursor is not in any run: we're at the visual and logical edge. SelectionModel edge = EdgeSelectionModel(direction); if (edge.caret_pos() == selection.caret_pos()) return edge; int visual_index = (direction == CURSOR_RIGHT) ? 0 : run_list->size() - 1; run = run_list->runs()[run_list->visual_to_logical(visual_index)]; } else { // If the cursor is moving within the current run, just move it by one // grapheme in the appropriate direction. run = run_list->runs()[run_index]; size_t caret = selection.caret_pos(); bool forward_motion = run->is_rtl == (direction == CURSOR_LEFT); if (forward_motion) { if (caret < DisplayIndexToTextIndex(run->range.end())) { caret = IndexOfAdjacentGrapheme(caret, CURSOR_FORWARD); return SelectionModel(caret, CURSOR_BACKWARD); } } else { if (caret > DisplayIndexToTextIndex(run->range.start())) { caret = IndexOfAdjacentGrapheme(caret, CURSOR_BACKWARD); return SelectionModel(caret, CURSOR_FORWARD); } } // The cursor is at the edge of a run; move to the visually adjacent run. int visual_index = run_list->logical_to_visual(run_index); visual_index += (direction == CURSOR_LEFT) ? -1 : 1; if (visual_index < 0 || visual_index >= static_cast(run_list->size())) return EdgeSelectionModel(direction); run = run_list->runs()[run_list->visual_to_logical(visual_index)]; } bool forward_motion = run->is_rtl == (direction == CURSOR_LEFT); return forward_motion ? FirstSelectionModelInsideRun(run) : LastSelectionModelInsideRun(run); } SelectionModel RenderTextHarfBuzz::AdjacentWordSelectionModel( const SelectionModel& selection, VisualCursorDirection direction) { if (obscured()) return EdgeSelectionModel(direction); base::i18n::BreakIterator iter(text(), base::i18n::BreakIterator::BREAK_WORD); bool success = iter.Init(); DCHECK(success); if (!success) return selection; // Match OS specific word break behavior. #if defined(OS_WIN) size_t pos; if (direction == CURSOR_RIGHT) { pos = std::min(selection.caret_pos() + 1, text().length()); while (iter.Advance()) { pos = iter.pos(); if (iter.IsWord() && pos > selection.caret_pos()) break; } } else { // direction == CURSOR_LEFT // Notes: We always iterate words from the beginning. // This is probably fast enough for our usage, but we may // want to modify WordIterator so that it can start from the // middle of string and advance backwards. pos = std::max(selection.caret_pos() - 1, 0); while (iter.Advance()) { if (iter.IsWord()) { size_t begin = iter.pos() - iter.GetString().length(); if (begin == selection.caret_pos()) { // The cursor is at the beginning of a word. // Move to previous word. break; } else if (iter.pos() >= selection.caret_pos()) { // The cursor is in the middle or at the end of a word. // Move to the top of current word. pos = begin; break; } pos = iter.pos() - iter.GetString().length(); } } } return SelectionModel(pos, CURSOR_FORWARD); #else internal::TextRunList* run_list = GetRunList(); SelectionModel cur(selection); for (;;) { cur = AdjacentCharSelectionModel(cur, direction); size_t run = GetRunContainingCaret(cur); if (run == run_list->size()) break; const bool is_forward = run_list->runs()[run]->is_rtl == (direction == CURSOR_LEFT); size_t cursor = cur.caret_pos(); if (is_forward ? iter.IsEndOfWord(cursor) : iter.IsStartOfWord(cursor)) break; } return cur; #endif } std::vector RenderTextHarfBuzz::GetSubstringBounds(const Range& range) { DCHECK(!update_display_run_list_); DCHECK(Range(0, text().length()).Contains(range)); Range layout_range(TextIndexToDisplayIndex(range.start()), TextIndexToDisplayIndex(range.end())); DCHECK(Range(0, GetDisplayText().length()).Contains(layout_range)); std::vector rects; if (layout_range.is_empty()) return rects; std::vector bounds; internal::TextRunList* run_list = GetRunList(); // Add a Range for each run/selection intersection. for (size_t i = 0; i < run_list->size(); ++i) { internal::TextRunHarfBuzz* run = run_list->runs()[run_list->visual_to_logical(i)]; Range intersection = run->range.Intersect(layout_range); if (!intersection.IsValid()) continue; DCHECK(!intersection.is_reversed()); const size_t left_index = run->is_rtl ? intersection.end() - 1 : intersection.start(); const Range leftmost_character_x = run->GetGraphemeBounds(GetGraphemeIterator(), left_index).Round(); const size_t right_index = run->is_rtl ? intersection.start() : intersection.end() - 1; const Range rightmost_character_x = run->GetGraphemeBounds(GetGraphemeIterator(), right_index).Round(); Range range_x(leftmost_character_x.start(), rightmost_character_x.end()); DCHECK(!range_x.is_reversed()); if (range_x.is_empty()) continue; // Union this with the last range if they're adjacent. DCHECK(bounds.empty() || bounds.back().GetMax() <= range_x.GetMin()); if (!bounds.empty() && bounds.back().GetMax() == range_x.GetMin()) { range_x = Range(bounds.back().GetMin(), range_x.GetMax()); bounds.pop_back(); } bounds.push_back(range_x); } for (Range& bound : bounds) { std::vector current_rects = TextBoundsToViewBounds(bound); rects.insert(rects.end(), current_rects.begin(), current_rects.end()); } return rects; } size_t RenderTextHarfBuzz::TextIndexToDisplayIndex(size_t index) { return TextIndexToGivenTextIndex(GetDisplayText(), index); } size_t RenderTextHarfBuzz::DisplayIndexToTextIndex(size_t index) { if (!obscured()) return index; const size_t text_index = UTF16OffsetToIndex(text(), 0, index); DCHECK_LE(text_index, text().length()); return text_index; } bool RenderTextHarfBuzz::IsValidCursorIndex(size_t index) { if (index == 0 || index == text().length()) return true; if (!IsValidLogicalIndex(index)) return false; base::i18n::BreakIterator* grapheme_iterator = GetGraphemeIterator(); return !grapheme_iterator || grapheme_iterator->IsGraphemeBoundary(index); } void RenderTextHarfBuzz::OnLayoutTextAttributeChanged(bool text_changed) { update_layout_run_list_ = true; OnDisplayTextAttributeChanged(); } void RenderTextHarfBuzz::OnDisplayTextAttributeChanged() { update_display_text_ = true; update_grapheme_iterator_ = true; } void RenderTextHarfBuzz::EnsureLayout() { EnsureLayoutRunList(); if (update_display_run_list_) { DCHECK(text_elided()); const base::string16& display_text = GetDisplayText(); display_run_list_.reset(new internal::TextRunList); if (!display_text.empty()) { TRACE_EVENT0("ui", "RenderTextHarfBuzz:EnsureLayout1"); ItemizeTextToRuns(display_text, display_run_list_.get()); // TODO(ckocagil): Remove ScopedTracker below once crbug.com/441028 is // fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION("441028 ShapeRunList() 1")); ShapeRunList(display_text, display_run_list_.get()); } update_display_run_list_ = false; std::vector empty_lines; set_lines(&empty_lines); } if (lines().empty()) { // TODO(ckocagil): Remove ScopedTracker below once crbug.com/441028 is // fixed. scoped_ptr tracking_profile( new tracked_objects::ScopedTracker( FROM_HERE_WITH_EXPLICIT_FUNCTION("441028 HarfBuzzLineBreaker"))); internal::TextRunList* run_list = GetRunList(); HarfBuzzLineBreaker line_breaker( display_rect().width(), font_list().GetBaseline(), std::max(font_list().GetHeight(), min_line_height()), word_wrap_behavior(), GetDisplayText(), multiline() ? &GetLineBreaks() : nullptr, *run_list); tracking_profile.reset(); if (multiline()) line_breaker.ConstructMultiLines(); else line_breaker.ConstructSingleLine(); std::vector lines; line_breaker.FinalizeLines(&lines, &total_size_); set_lines(&lines); } } void RenderTextHarfBuzz::DrawVisualText(internal::SkiaTextRenderer* renderer) { DCHECK(!update_layout_run_list_); DCHECK(!update_display_run_list_); DCHECK(!update_display_text_); if (lines().empty()) return; ApplyFadeEffects(renderer); ApplyTextShadows(renderer); ApplyCompositionAndSelectionStyles(); internal::TextRunList* run_list = GetRunList(); for (size_t i = 0; i < lines().size(); ++i) { const internal::Line& line = lines()[i]; const Vector2d origin = GetLineOffset(i) + Vector2d(0, line.baseline); SkScalar preceding_segment_widths = 0; for (const internal::LineSegment& segment : line.segments) { const internal::TextRunHarfBuzz& run = *run_list->runs()[segment.run]; renderer->SetTypeface(run.skia_face.get()); renderer->SetTextSize(SkIntToScalar(run.font_size)); renderer->SetFontRenderParams(run.render_params, subpixel_rendering_suppressed()); Range glyphs_range = run.CharRangeToGlyphRange(segment.char_range); scoped_ptr positions(new SkPoint[glyphs_range.length()]); SkScalar offset_x = preceding_segment_widths - ((glyphs_range.GetMin() != 0) ? run.positions[glyphs_range.GetMin()].x() : 0); for (size_t j = 0; j < glyphs_range.length(); ++j) { positions[j] = run.positions[(glyphs_range.is_reversed()) ? (glyphs_range.start() - j) : (glyphs_range.start() + j)]; positions[j].offset(SkIntToScalar(origin.x()) + offset_x, SkIntToScalar(origin.y() + run.baseline_offset)); } for (BreakList::const_iterator it = colors().GetBreak(segment.char_range.start()); it != colors().breaks().end() && it->first < segment.char_range.end(); ++it) { const Range intersection = colors().GetRange(it).Intersect(segment.char_range); const Range colored_glyphs = run.CharRangeToGlyphRange(intersection); // The range may be empty if a portion of a multi-character grapheme is // selected, yielding two colors for a single glyph. For now, this just // paints the glyph with a single style, but it should paint it twice, // clipped according to selection bounds. See http://crbug.com/366786 if (colored_glyphs.is_empty()) continue; renderer->SetForegroundColor(it->second); renderer->DrawPosText( &positions[colored_glyphs.start() - glyphs_range.start()], &run.glyphs[colored_glyphs.start()], colored_glyphs.length()); int start_x = SkScalarRoundToInt( positions[colored_glyphs.start() - glyphs_range.start()].x()); int end_x = SkScalarRoundToInt( (colored_glyphs.end() == glyphs_range.end()) ? (SkFloatToScalar(segment.width()) + preceding_segment_widths + SkIntToScalar(origin.x())) : positions[colored_glyphs.end() - glyphs_range.start()].x()); renderer->DrawDecorations(start_x, origin.y(), end_x - start_x, run.underline, run.strike, run.diagonal_strike); } preceding_segment_widths += SkFloatToScalar(segment.width()); } } renderer->EndDiagonalStrike(); UndoCompositionAndSelectionStyles(); } size_t RenderTextHarfBuzz::GetRunContainingCaret( const SelectionModel& caret) { DCHECK(!update_display_run_list_); size_t layout_position = TextIndexToDisplayIndex(caret.caret_pos()); LogicalCursorDirection affinity = caret.caret_affinity(); internal::TextRunList* run_list = GetRunList(); for (size_t i = 0; i < run_list->size(); ++i) { internal::TextRunHarfBuzz* run = run_list->runs()[i]; if (RangeContainsCaret(run->range, layout_position, affinity)) return i; } return run_list->size(); } size_t RenderTextHarfBuzz::GetRunContainingXCoord(float x, float* offset) const { DCHECK(!update_display_run_list_); const internal::TextRunList* run_list = GetRunList(); if (x < 0) return run_list->size(); // Find the text run containing the argument point (assumed already offset). float current_x = 0; for (size_t i = 0; i < run_list->size(); ++i) { size_t run = run_list->visual_to_logical(i); current_x += run_list->runs()[run]->width; if (x < current_x) { *offset = x - (current_x - run_list->runs()[run]->width); return run; } } return run_list->size(); } SelectionModel RenderTextHarfBuzz::FirstSelectionModelInsideRun( const internal::TextRunHarfBuzz* run) { size_t position = DisplayIndexToTextIndex(run->range.start()); position = IndexOfAdjacentGrapheme(position, CURSOR_FORWARD); return SelectionModel(position, CURSOR_BACKWARD); } SelectionModel RenderTextHarfBuzz::LastSelectionModelInsideRun( const internal::TextRunHarfBuzz* run) { size_t position = DisplayIndexToTextIndex(run->range.end()); position = IndexOfAdjacentGrapheme(position, CURSOR_BACKWARD); return SelectionModel(position, CURSOR_FORWARD); } void RenderTextHarfBuzz::ItemizeTextToRuns( const base::string16& text, internal::TextRunList* run_list_out) { DCHECK_NE(0U, text.length()); // If ICU fails to itemize the text, we create a run that spans the entire // text. This is needed because leaving the runs set empty causes some clients // to misbehave since they expect non-zero text metrics from a non-empty text. base::i18n::BiDiLineIterator bidi_iterator; if (!bidi_iterator.Open(text, GetTextDirection(text))) { internal::TextRunHarfBuzz* run = new internal::TextRunHarfBuzz; run->range = Range(0, text.length()); run_list_out->add(run); run_list_out->InitIndexMap(); return; } // Temporarily apply composition underlines and selection colors. ApplyCompositionAndSelectionStyles(); // Build the run list from the script items and ranged styles and baselines. // Use an empty color BreakList to avoid breaking runs at color boundaries. BreakList empty_colors; empty_colors.SetMax(text.length()); DCHECK_LE(text.size(), baselines().max()); for (const BreakList& style : styles()) DCHECK_LE(text.size(), style.max()); internal::StyleIterator style(empty_colors, baselines(), styles()); for (size_t run_break = 0; run_break < text.length();) { internal::TextRunHarfBuzz* run = new internal::TextRunHarfBuzz; run->range.set_start(run_break); run->font_style = (style.style(BOLD) ? Font::BOLD : 0) | (style.style(ITALIC) ? Font::ITALIC : 0); run->baseline_type = style.baseline(); run->strike = style.style(STRIKE); run->diagonal_strike = style.style(DIAGONAL_STRIKE); run->underline = style.style(UNDERLINE); int32_t script_item_break = 0; bidi_iterator.GetLogicalRun(run_break, &script_item_break, &run->level); CHECK_GT(static_cast(script_item_break), run_break); // Odd BiDi embedding levels correspond to RTL runs. run->is_rtl = (run->level % 2) == 1; // Find the length and script of this script run. script_item_break = ScriptInterval(text, run_break, script_item_break - run_break, &run->script) + run_break; // Find the next break and advance the iterators as needed. const size_t new_run_break = std::min( static_cast(script_item_break), TextIndexToGivenTextIndex(text, style.GetRange().end())); CHECK_GT(new_run_break, run_break) << "It must proceed! " << text << " " << run_break; run_break = new_run_break; // Break runs at certain characters that need to be rendered separately to // prevent either an unusual character from forcing a fallback font on the // entire run, or brackets from being affected by a fallback font. // http://crbug.com/278913, http://crbug.com/396776 if (run_break > run->range.start()) run_break = FindRunBreakingCharacter(text, run->range.start(), run_break); DCHECK(IsValidCodePointIndex(text, run_break)); style.UpdatePosition(DisplayIndexToTextIndex(run_break)); run->range.set_end(run_break); run_list_out->add(run); } // Undo the temporarily applied composition underlines and selection colors. UndoCompositionAndSelectionStyles(); run_list_out->InitIndexMap(); } bool RenderTextHarfBuzz::CompareFamily( const base::string16& text, const Font& font, const gfx::FontRenderParams& render_params, internal::TextRunHarfBuzz* run, Font* best_font, gfx::FontRenderParams* best_render_params, size_t* best_missing_glyphs) { if (!ShapeRunWithFont(text, font, render_params, run)) return false; const size_t missing_glyphs = run->CountMissingGlyphs(); if (missing_glyphs < *best_missing_glyphs) { *best_font = font; *best_render_params = render_params; *best_missing_glyphs = missing_glyphs; } return missing_glyphs == 0; } void RenderTextHarfBuzz::ShapeRunList(const base::string16& text, internal::TextRunList* run_list) { for (auto* run : run_list->runs()) ShapeRun(text, run); run_list->ComputePrecedingRunWidths(); } void RenderTextHarfBuzz::ShapeRun(const base::string16& text, internal::TextRunHarfBuzz* run) { const Font& primary_font = font_list().GetPrimaryFont(); const std::string primary_family = primary_font.GetFontName(); run->font_size = primary_font.GetFontSize(); run->baseline_offset = 0; if (run->baseline_type != NORMAL_BASELINE) { // Calculate a slightly smaller font. The ratio here is somewhat arbitrary. // Proportions from 5/9 to 5/7 all look pretty good. const float ratio = 5.0f / 9.0f; run->font_size = gfx::ToRoundedInt(primary_font.GetFontSize() * ratio); switch (run->baseline_type) { case SUPERSCRIPT: run->baseline_offset = primary_font.GetCapHeight() - primary_font.GetHeight(); break; case SUPERIOR: run->baseline_offset = gfx::ToRoundedInt(primary_font.GetCapHeight() * ratio) - primary_font.GetCapHeight(); break; case SUBSCRIPT: run->baseline_offset = primary_font.GetHeight() - primary_font.GetBaseline(); break; case INFERIOR: // Fall through. default: break; } } Font best_font; FontRenderParams best_render_params; size_t best_missing_glyphs = std::numeric_limits::max(); for (const Font& font : font_list().GetFonts()) { if (CompareFamily(text, font, font.GetFontRenderParams(), run, &best_font, &best_render_params, &best_missing_glyphs)) return; } #if defined(OS_WIN) Font uniscribe_font; std::string uniscribe_family; const base::char16* run_text = &(text[run->range.start()]); if (GetUniscribeFallbackFont(primary_font, run_text, run->range.length(), &uniscribe_font)) { uniscribe_family = uniscribe_font.GetFontName(); if (CompareFamily(text, uniscribe_font, uniscribe_font.GetFontRenderParams(), run, &best_font, &best_render_params, &best_missing_glyphs)) return; } #endif std::vector fallback_font_list = GetFallbackFonts(primary_font); #if defined(OS_WIN) // Append fonts in the fallback list of the Uniscribe font. if (!uniscribe_family.empty()) { std::vector uniscribe_fallbacks = GetFallbackFonts(uniscribe_font); fallback_font_list.insert(fallback_font_list.end(), uniscribe_fallbacks.begin(), uniscribe_fallbacks.end()); } // Add Segoe UI and its associated linked fonts to the fallback font list to // ensure that the fallback list covers the basic cases. // http://crbug.com/467459. On some Windows configurations the default font // could be a raster font like System, which would not give us a reasonable // fallback font list. if (!base::LowerCaseEqualsASCII(primary_font.GetFontName(), "segoe ui") && !base::LowerCaseEqualsASCII(uniscribe_family, "segoe ui")) { std::vector default_fallback_families = GetFallbackFonts(Font("Segoe UI", 13)); fallback_font_list.insert(fallback_font_list.end(), default_fallback_families.begin(), default_fallback_families.end()); } #endif // Use a set to track the fallback fonts and avoid duplicate entries. std::set fallback_fonts; // Try shaping with the fallback fonts. for (const auto& font : fallback_font_list) { std::string font_name = font.GetFontName(); if (font_name == primary_font.GetFontName()) continue; #if defined(OS_WIN) if (font_name == uniscribe_family) continue; #endif if (fallback_fonts.find(font) != fallback_fonts.end()) continue; fallback_fonts.insert(font); FontRenderParamsQuery query; query.families.push_back(font_name); query.pixel_size = run->font_size; query.style = run->font_style; FontRenderParams fallback_render_params = GetFontRenderParams(query, NULL); if (CompareFamily(text, font, fallback_render_params, run, &best_font, &best_render_params, &best_missing_glyphs)) return; } if (best_missing_glyphs != std::numeric_limits::max() && (best_font.GetFontName() == run->font.GetFontName() || ShapeRunWithFont(text, best_font, best_render_params, run))) return; run->glyph_count = 0; run->width = 0.0f; } bool RenderTextHarfBuzz::ShapeRunWithFont(const base::string16& text, const gfx::Font& font, const FontRenderParams& params, internal::TextRunHarfBuzz* run) { skia::RefPtr skia_face = internal::CreateSkiaTypeface(font, run->font_style); if (skia_face == NULL) return false; run->skia_face = skia_face; run->font = font; run->render_params = params; hb_font_t* harfbuzz_font = CreateHarfBuzzFont( run->skia_face.get(), SkIntToScalar(run->font_size), run->render_params, subpixel_rendering_suppressed()); // Create a HarfBuzz buffer and add the string to be shaped. The HarfBuzz // buffer holds our text, run information to be used by the shaping engine, // and the resulting glyph data. hb_buffer_t* buffer = hb_buffer_create(); hb_buffer_add_utf16(buffer, reinterpret_cast(text.c_str()), text.length(), run->range.start(), run->range.length()); hb_buffer_set_script(buffer, ICUScriptToHBScript(run->script)); hb_buffer_set_direction(buffer, run->is_rtl ? HB_DIRECTION_RTL : HB_DIRECTION_LTR); // TODO(ckocagil): Should we determine the actual language? hb_buffer_set_language(buffer, hb_language_get_default()); { // TODO(ckocagil): Remove ScopedTracker below once crbug.com/441028 is // fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION("441028 hb_shape()")); // Shape the text. hb_shape(harfbuzz_font, buffer, NULL, 0); } // Populate the run fields with the resulting glyph data in the buffer. unsigned int glyph_count = 0; hb_glyph_info_t* infos = hb_buffer_get_glyph_infos(buffer, &glyph_count); run->glyph_count = glyph_count; hb_glyph_position_t* hb_positions = hb_buffer_get_glyph_positions(buffer, NULL); run->glyphs.reset(new uint16_t[run->glyph_count]); run->glyph_to_char.resize(run->glyph_count); run->positions.reset(new SkPoint[run->glyph_count]); run->width = 0.0f; for (size_t i = 0; i < run->glyph_count; ++i) { DCHECK_LE(infos[i].codepoint, std::numeric_limits::max()); run->glyphs[i] = static_cast(infos[i].codepoint); run->glyph_to_char[i] = infos[i].cluster; const SkScalar x_offset = HarfBuzzUnitsToSkiaScalar(hb_positions[i].x_offset); const SkScalar y_offset = HarfBuzzUnitsToSkiaScalar(hb_positions[i].y_offset); run->positions[i].set(run->width + x_offset, -y_offset); run->width += (glyph_width_for_test_ > 0) ? glyph_width_for_test_ : HarfBuzzUnitsToFloat(hb_positions[i].x_advance); // Round run widths if subpixel positioning is off to match native behavior. if (!run->render_params.subpixel_positioning) run->width = std::floor(run->width + 0.5f); } hb_buffer_destroy(buffer); hb_font_destroy(harfbuzz_font); return true; } void RenderTextHarfBuzz::EnsureLayoutRunList() { if (update_layout_run_list_) { layout_run_list_.Reset(); const base::string16& text = layout_text(); if (!text.empty()) { TRACE_EVENT0("ui", "RenderTextHarfBuzz:EnsureLayoutRunList"); ItemizeTextToRuns(text, &layout_run_list_); // TODO(ckocagil): Remove ScopedTracker below once crbug.com/441028 is // fixed. tracked_objects::ScopedTracker tracking_profile( FROM_HERE_WITH_EXPLICIT_FUNCTION("441028 ShapeRunList() 2")); ShapeRunList(text, &layout_run_list_); } std::vector empty_lines; set_lines(&empty_lines); display_run_list_.reset(); update_display_text_ = true; update_layout_run_list_ = false; } if (update_display_text_) { UpdateDisplayText(multiline() ? 0 : layout_run_list_.width()); update_display_text_ = false; update_display_run_list_ = text_elided(); } } base::i18n::BreakIterator* RenderTextHarfBuzz::GetGraphemeIterator() { if (update_grapheme_iterator_) { update_grapheme_iterator_ = false; grapheme_iterator_.reset(new base::i18n::BreakIterator( GetDisplayText(), base::i18n::BreakIterator::BREAK_CHARACTER)); if (!grapheme_iterator_->Init()) grapheme_iterator_.reset(); } return grapheme_iterator_.get(); } internal::TextRunList* RenderTextHarfBuzz::GetRunList() { DCHECK(!update_layout_run_list_); DCHECK(!update_display_run_list_); return text_elided() ? display_run_list_.get() : &layout_run_list_; } const internal::TextRunList* RenderTextHarfBuzz::GetRunList() const { return const_cast(this)->GetRunList(); } } // namespace gfx