// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/render_text_win.h" #include #include "base/i18n/break_iterator.h" #include "base/i18n/char_iterator.h" #include "base/i18n/rtl.h" #include "base/logging.h" #include "base/strings/string_util.h" #include "base/strings/utf_string_conversions.h" #include "base/win/windows_version.h" #include "third_party/icu/source/common/unicode/uchar.h" #include "ui/gfx/canvas.h" #include "ui/gfx/font_fallback_win.h" #include "ui/gfx/font_render_params.h" #include "ui/gfx/geometry/size_conversions.h" #include "ui/gfx/platform_font_win.h" #include "ui/gfx/utf16_indexing.h" namespace gfx { namespace { // The maximum length of text supported for Uniscribe layout and display. // This empirically chosen value should prevent major performance degradations. // TODO(msw): Support longer text, partial layout/painting, etc. const size_t kMaxUniscribeTextLength = 10000; // The initial guess and maximum supported number of runs; arbitrary values. // TODO(msw): Support more runs, determine a better initial guess, etc. const int kGuessRuns = 100; const size_t kMaxRuns = 10000; // The maximum number of glyphs per run; ScriptShape fails on larger values. const size_t kMaxGlyphs = 65535; // Changes |font| to have the specified |font_size| (or |font_height| on Windows // XP) and |font_style| if it is not the case already. Only considers bold and // italic styles, since the underlined style has no effect on glyph shaping. void DeriveFontIfNecessary(int font_size, int font_height, int font_style, Font* font) { const int kStyleMask = (Font::BOLD | Font::ITALIC); const int target_style = (font_style & kStyleMask); // On Windows XP, the font must be resized using |font_height| instead of // |font_size| to match GDI behavior. if (base::win::GetVersion() < base::win::VERSION_VISTA) { PlatformFontWin* platform_font = static_cast(font->platform_font()); *font = platform_font->DeriveFontWithHeight(font_height, target_style); return; } const int current_style = (font->GetStyle() & kStyleMask); const int current_size = font->GetFontSize(); if (current_style != target_style || current_size != font_size) *font = font->Derive(font_size - current_size, target_style); } // Returns true if |c| is a Unicode BiDi control character. bool IsUnicodeBidiControlCharacter(base::char16 c) { return c == base::i18n::kRightToLeftMark || c == base::i18n::kLeftToRightMark || c == base::i18n::kLeftToRightEmbeddingMark || c == base::i18n::kRightToLeftEmbeddingMark || c == base::i18n::kPopDirectionalFormatting || c == base::i18n::kLeftToRightOverride || c == base::i18n::kRightToLeftOverride; } // Returns the corresponding glyph range of the given character range. // |range| is in text-space (0 corresponds to |GetLayoutText()[0]|). // Returned value is in run-space (0 corresponds to the first glyph in the run). Range CharRangeToGlyphRange(const internal::TextRun& run, const Range& range) { DCHECK(run.range.Contains(range)); DCHECK(!range.is_reversed()); DCHECK(!range.is_empty()); const Range run_range(range.start() - run.range.start(), range.end() - run.range.start()); Range result; if (run.script_analysis.fRTL) { result = Range(run.logical_clusters[run_range.end() - 1], run_range.start() > 0 ? run.logical_clusters[run_range.start() - 1] : run.glyph_count); } else { result = Range(run.logical_clusters[run_range.start()], run_range.end() < run.range.length() ? run.logical_clusters[run_range.end()] : run.glyph_count); } DCHECK(!result.is_reversed()); DCHECK(Range(0, run.glyph_count).Contains(result)); return result; } // Starting from |start_char|, finds a suitable line break position at or before // |available_width| using word break info from |breaks|. If |empty_line| is // true, this function will not roll back to |start_char| and |*next_char| will // be greater than |start_char| (to avoid constructing empty lines). Returns // whether to skip the line before |*next_char|. // TODO(ckocagil): Do not break ligatures and diacritics. // TextRun::logical_clusters might help. // TODO(ckocagil): We might have to reshape after breaking at ligatures. // See whether resolving the TODO above resolves this too. // TODO(ckocagil): Do not reserve width for whitespace at the end of lines. bool BreakRunAtWidth(const wchar_t* text, const internal::TextRun& run, const BreakList& breaks, size_t start_char, int available_width, bool empty_line, int* width, size_t* next_char) { DCHECK(run.range.Contains(Range(start_char, start_char + 1))); BreakList::const_iterator word = breaks.GetBreak(start_char); BreakList::const_iterator next_word = word + 1; // Width from |std::max(word->first, start_char)| to the current character. int word_width = 0; *width = 0; for (size_t i = start_char; i < run.range.end(); ++i) { if (U16_IS_SINGLE(text[i]) && text[i] == L'\n') { *next_char = i + 1; return true; } // |word| holds the word boundary at or before |i|, and |next_word| holds // the word boundary right after |i|. Advance both |word| and |next_word| // when |i| reaches |next_word|. if (next_word != breaks.breaks().end() && i >= next_word->first) { word = next_word++; word_width = 0; } Range glyph_range = CharRangeToGlyphRange(run, Range(i, i + 1)); int char_width = 0; for (size_t j = glyph_range.start(); j < glyph_range.end(); ++j) char_width += run.advance_widths[j]; *width += char_width; word_width += char_width; if (*width > available_width) { if (!empty_line || word_width < *width) { // Roll back one word. *width -= word_width; *next_char = std::max(word->first, start_char); } else if (char_width < *width) { // Roll back one character. *width -= char_width; *next_char = i; } else { // Continue from the next character. *next_char = i + 1; } return true; } } *next_char = run.range.end(); return false; } // For segments in the same run, checks the continuity and order of |x_range| // and |char_range| fields. void CheckLineIntegrity(const std::vector& lines, const ScopedVector& runs) { size_t previous_segment_line = 0; const internal::LineSegment* previous_segment = NULL; for (size_t i = 0; i < lines.size(); ++i) { for (size_t j = 0; j < lines[i].segments.size(); ++j) { const internal::LineSegment* segment = &lines[i].segments[j]; internal::TextRun* run = runs[segment->run]; if (!previous_segment) { previous_segment = segment; } else if (runs[previous_segment->run] != run) { previous_segment = NULL; } else { DCHECK_EQ(previous_segment->char_range.end(), segment->char_range.start()); if (!run->script_analysis.fRTL) { DCHECK_EQ(previous_segment->x_range.end(), segment->x_range.start()); } else { DCHECK_EQ(segment->x_range.end(), previous_segment->x_range.start()); } previous_segment = segment; previous_segment_line = i; } } } } // Returns true if characters of |block_code| may trigger font fallback. bool IsUnusualBlockCode(const UBlockCode block_code) { return block_code == UBLOCK_GEOMETRIC_SHAPES || block_code == UBLOCK_MISCELLANEOUS_SYMBOLS; } // Returns the index of the first unusual character after a usual character or // vice versa. Unusual characters are defined by |IsUnusualBlockCode|. size_t FindUnusualCharacter(const base::string16& text, size_t run_start, size_t run_break) { const int32 run_length = static_cast(run_break - run_start); base::i18n::UTF16CharIterator iter(text.c_str() + run_start, run_length); const UBlockCode first_block_code = ublock_getCode(iter.get()); const bool first_block_unusual = IsUnusualBlockCode(first_block_code); while (iter.Advance() && iter.array_pos() < run_length) { const UBlockCode current_block_code = ublock_getCode(iter.get()); if (current_block_code != first_block_code && (first_block_unusual || IsUnusualBlockCode(current_block_code))) { return run_start + iter.array_pos(); } } return run_break; } } // namespace namespace internal { TextRun::TextRun() : font_style(0), strike(false), diagonal_strike(false), underline(false), width(0), preceding_run_widths(0), glyph_count(0), script_cache(NULL) { memset(&script_analysis, 0, sizeof(script_analysis)); memset(&abc_widths, 0, sizeof(abc_widths)); } TextRun::~TextRun() { ScriptFreeCache(&script_cache); } // Returns the X coordinate of the leading or |trailing| edge of the glyph // starting at |index|, relative to the left of the text (not the view). int GetGlyphXBoundary(const internal::TextRun* run, size_t index, bool trailing) { DCHECK_GE(index, run->range.start()); DCHECK_LT(index, run->range.end() + (trailing ? 0 : 1)); int x = 0; HRESULT hr = ScriptCPtoX( index - run->range.start(), trailing, run->range.length(), run->glyph_count, run->logical_clusters.get(), run->visible_attributes.get(), run->advance_widths.get(), &run->script_analysis, &x); DCHECK(SUCCEEDED(hr)); return run->preceding_run_widths + x; } // Internal class to generate Line structures. If |multiline| is true, the text // is broken into lines at |words| boundaries such that each line is no longer // than |max_width|. If |multiline| is false, only outputs a single Line from // the given runs. |min_baseline| and |min_height| are the minimum baseline and // height for each line. // TODO(ckocagil): Expose the interface of this class in the header and test // this class directly. class LineBreaker { public: LineBreaker(int max_width, int min_baseline, int min_height, bool multiline, const wchar_t* text, const BreakList* words, const ScopedVector& runs) : max_width_(max_width), min_baseline_(min_baseline), min_height_(min_height), multiline_(multiline), text_(text), words_(words), runs_(runs), text_x_(0), line_x_(0), line_ascent_(0), line_descent_(0) { AdvanceLine(); } // Breaks the run at given |run_index| into Line structs. void AddRun(int run_index) { const TextRun* run = runs_[run_index]; bool run_fits = !multiline_; if (multiline_ && line_x_ + run->width <= max_width_) { DCHECK(!run->range.is_empty()); const wchar_t first_char = text_[run->range.start()]; // Uniscribe always puts newline characters in their own runs. if (!U16_IS_SINGLE(first_char) || first_char != L'\n') run_fits = true; } if (!run_fits) BreakRun(run_index); else AddSegment(run_index, run->range, run->width); } // Finishes line breaking and outputs the results. Can be called at most once. void Finalize(std::vector* lines, Size* size) { DCHECK(!lines_.empty()); // Add an empty line to finish the line size calculation and remove it. AdvanceLine(); lines_.pop_back(); *size = total_size_; lines->swap(lines_); } private: // A (line index, segment index) pair that specifies a segment in |lines_|. typedef std::pair SegmentHandle; LineSegment* SegmentFromHandle(const SegmentHandle& handle) { return &lines_[handle.first].segments[handle.second]; } // Breaks a run into segments that fit in the last line in |lines_| and adds // them. Adds a new Line to the back of |lines_| whenever a new segment can't // be added without the Line's width exceeding |max_width_|. void BreakRun(int run_index) { DCHECK(words_); const TextRun* const run = runs_[run_index]; int width = 0; size_t next_char = run->range.start(); // Break the run until it fits the current line. while (next_char < run->range.end()) { const size_t current_char = next_char; const bool skip_line = BreakRunAtWidth(text_, *run, *words_, current_char, max_width_ - line_x_, line_x_ == 0, &width, &next_char); AddSegment(run_index, Range(current_char, next_char), width); if (skip_line) AdvanceLine(); } } // RTL runs are broken in logical order but displayed in visual order. To find // the text-space coordinate (where it would fall in a single-line text) // |x_range| of RTL segments, segment widths are applied in reverse order. // e.g. {[5, 10], [10, 40]} will become {[35, 40], [5, 35]}. void UpdateRTLSegmentRanges() { if (rtl_segments_.empty()) return; int x = SegmentFromHandle(rtl_segments_[0])->x_range.start(); for (size_t i = rtl_segments_.size(); i > 0; --i) { LineSegment* segment = SegmentFromHandle(rtl_segments_[i - 1]); const size_t segment_width = segment->x_range.length(); segment->x_range = Range(x, x + segment_width); x += segment_width; } rtl_segments_.clear(); } // Finishes the size calculations of the last Line in |lines_|. Adds a new // Line to the back of |lines_|. void AdvanceLine() { if (!lines_.empty()) { Line* line = &lines_.back(); // TODO(ckocagil): Determine optimal multiline height behavior. if (line_ascent_ + line_descent_ == 0) { line_ascent_ = min_baseline_; line_descent_ = min_height_ - min_baseline_; } // Set the single-line mode Line's metrics to be at least // |RenderText::font_list()| to not break the current single-line code. line_ascent_ = std::max(line_ascent_, min_baseline_); line_descent_ = std::max(line_descent_, min_height_ - min_baseline_); line->baseline = line_ascent_; line->size.set_height(line_ascent_ + line_descent_); line->preceding_heights = total_size_.height(); const Size line_size(ToCeiledSize(line->size)); total_size_.set_height(total_size_.height() + line_size.height()); total_size_.set_width(std::max(total_size_.width(), line_size.width())); } line_x_ = 0; line_ascent_ = 0; line_descent_ = 0; lines_.push_back(Line()); } // Adds a new segment with the given properties to |lines_.back()|. void AddSegment(int run_index, Range char_range, int width) { if (char_range.is_empty()) { DCHECK_EQ(width, 0); return; } const TextRun* run = runs_[run_index]; line_ascent_ = std::max(line_ascent_, run->font.GetBaseline()); line_descent_ = std::max(line_descent_, run->font.GetHeight() - run->font.GetBaseline()); LineSegment segment; segment.run = run_index; segment.char_range = char_range; segment.x_range = Range(text_x_, text_x_ + width); Line* line = &lines_.back(); line->segments.push_back(segment); line->size.set_width(line->size.width() + segment.x_range.length()); if (run->script_analysis.fRTL) { rtl_segments_.push_back(SegmentHandle(lines_.size() - 1, line->segments.size() - 1)); // If this is the last segment of an RTL run, reprocess the text-space x // ranges of all segments from the run. if (char_range.end() == run->range.end()) UpdateRTLSegmentRanges(); } text_x_ += width; line_x_ += width; } const int max_width_; const int min_baseline_; const int min_height_; const bool multiline_; const wchar_t* text_; const BreakList* const words_; const ScopedVector& runs_; // Stores the resulting lines. std::vector lines_; // Text space and line space x coordinates of the next segment to be added. int text_x_; int line_x_; // Size of the multiline text, not including the currently processed line. Size total_size_; // Ascent and descent values of the current line, |lines_.back()|. int line_ascent_; int line_descent_; // The current RTL run segments, to be applied by |UpdateRTLSegmentRanges()|. std::vector rtl_segments_; DISALLOW_COPY_AND_ASSIGN(LineBreaker); }; } // namespace internal // static HDC RenderTextWin::cached_hdc_ = NULL; // static std::map RenderTextWin::successful_substitute_fonts_; RenderTextWin::RenderTextWin() : RenderText(), needs_layout_(false) { set_truncate_length(kMaxUniscribeTextLength); memset(&script_control_, 0, sizeof(script_control_)); memset(&script_state_, 0, sizeof(script_state_)); MoveCursorTo(EdgeSelectionModel(CURSOR_LEFT)); } RenderTextWin::~RenderTextWin() {} scoped_ptr RenderTextWin::CreateInstanceOfSameType() const { return scoped_ptr(new RenderTextWin); } Size RenderTextWin::GetStringSize() { EnsureLayout(); return multiline_string_size_; } SelectionModel RenderTextWin::FindCursorPosition(const Point& point) { if (text().empty()) return SelectionModel(); EnsureLayout(); // Find the run that contains the point and adjust the argument location. int x = ToTextPoint(point).x(); size_t run_index = GetRunContainingXCoord(x); if (run_index >= runs_.size()) return EdgeSelectionModel((x < 0) ? CURSOR_LEFT : CURSOR_RIGHT); internal::TextRun* run = runs_[run_index]; int position = 0, trailing = 0; HRESULT hr = ScriptXtoCP(x - run->preceding_run_widths, run->range.length(), run->glyph_count, run->logical_clusters.get(), run->visible_attributes.get(), run->advance_widths.get(), &(run->script_analysis), &position, &trailing); DCHECK(SUCCEEDED(hr)); DCHECK_GE(trailing, 0); position += run->range.start(); const size_t cursor = LayoutIndexToTextIndex(position + trailing); DCHECK_LE(cursor, text().length()); return SelectionModel(cursor, trailing ? CURSOR_BACKWARD : CURSOR_FORWARD); } std::vector RenderTextWin::GetFontSpansForTesting() { EnsureLayout(); std::vector spans; for (size_t i = 0; i < runs_.size(); ++i) { spans.push_back(RenderText::FontSpan(runs_[i]->font, Range(LayoutIndexToTextIndex(runs_[i]->range.start()), LayoutIndexToTextIndex(runs_[i]->range.end())))); } return spans; } int RenderTextWin::GetLayoutTextBaseline() { EnsureLayout(); return lines()[0].baseline; } SelectionModel RenderTextWin::AdjacentCharSelectionModel( const SelectionModel& selection, VisualCursorDirection direction) { DCHECK(!needs_layout_); internal::TextRun* run; size_t run_index = GetRunContainingCaret(selection); if (run_index >= runs_.size()) { // The cursor is not in any run: we're at the visual and logical edge. SelectionModel edge = EdgeSelectionModel(direction); if (edge.caret_pos() == selection.caret_pos()) return edge; int visual_index = (direction == CURSOR_RIGHT) ? 0 : runs_.size() - 1; run = runs_[visual_to_logical_[visual_index]]; } else { // If the cursor is moving within the current run, just move it by one // grapheme in the appropriate direction. run = runs_[run_index]; size_t caret = selection.caret_pos(); bool forward_motion = run->script_analysis.fRTL == (direction == CURSOR_LEFT); if (forward_motion) { if (caret < LayoutIndexToTextIndex(run->range.end())) { caret = IndexOfAdjacentGrapheme(caret, CURSOR_FORWARD); return SelectionModel(caret, CURSOR_BACKWARD); } } else { if (caret > LayoutIndexToTextIndex(run->range.start())) { caret = IndexOfAdjacentGrapheme(caret, CURSOR_BACKWARD); return SelectionModel(caret, CURSOR_FORWARD); } } // The cursor is at the edge of a run; move to the visually adjacent run. int visual_index = logical_to_visual_[run_index]; visual_index += (direction == CURSOR_LEFT) ? -1 : 1; if (visual_index < 0 || visual_index >= static_cast(runs_.size())) return EdgeSelectionModel(direction); run = runs_[visual_to_logical_[visual_index]]; } bool forward_motion = run->script_analysis.fRTL == (direction == CURSOR_LEFT); return forward_motion ? FirstSelectionModelInsideRun(run) : LastSelectionModelInsideRun(run); } // TODO(msw): Implement word breaking for Windows. SelectionModel RenderTextWin::AdjacentWordSelectionModel( const SelectionModel& selection, VisualCursorDirection direction) { if (obscured()) return EdgeSelectionModel(direction); base::i18n::BreakIterator iter(text(), base::i18n::BreakIterator::BREAK_WORD); bool success = iter.Init(); DCHECK(success); if (!success) return selection; size_t pos; if (direction == CURSOR_RIGHT) { pos = std::min(selection.caret_pos() + 1, text().length()); while (iter.Advance()) { pos = iter.pos(); if (iter.IsWord() && pos > selection.caret_pos()) break; } } else { // direction == CURSOR_LEFT // Notes: We always iterate words from the beginning. // This is probably fast enough for our usage, but we may // want to modify WordIterator so that it can start from the // middle of string and advance backwards. pos = std::max(selection.caret_pos() - 1, 0); while (iter.Advance()) { if (iter.IsWord()) { size_t begin = iter.pos() - iter.GetString().length(); if (begin == selection.caret_pos()) { // The cursor is at the beginning of a word. // Move to previous word. break; } else if (iter.pos() >= selection.caret_pos()) { // The cursor is in the middle or at the end of a word. // Move to the top of current word. pos = begin; break; } else { pos = iter.pos() - iter.GetString().length(); } } } } return SelectionModel(pos, CURSOR_FORWARD); } Range RenderTextWin::GetGlyphBounds(size_t index) { EnsureLayout(); const size_t run_index = GetRunContainingCaret(SelectionModel(index, CURSOR_FORWARD)); // Return edge bounds if the index is invalid or beyond the layout text size. if (run_index >= runs_.size()) return Range(string_width_); internal::TextRun* run = runs_[run_index]; const size_t layout_index = TextIndexToLayoutIndex(index); return Range(GetGlyphXBoundary(run, layout_index, false), GetGlyphXBoundary(run, layout_index, true)); } std::vector RenderTextWin::GetSubstringBounds(const Range& range) { DCHECK(!needs_layout_); DCHECK(Range(0, text().length()).Contains(range)); Range layout_range(TextIndexToLayoutIndex(range.start()), TextIndexToLayoutIndex(range.end())); DCHECK(Range(0, GetLayoutText().length()).Contains(layout_range)); std::vector rects; if (layout_range.is_empty()) return rects; std::vector bounds; // Add a Range for each run/selection intersection. // TODO(msw): The bounds should probably not always be leading the range ends. for (size_t i = 0; i < runs_.size(); ++i) { const internal::TextRun* run = runs_[visual_to_logical_[i]]; Range intersection = run->range.Intersect(layout_range); if (intersection.IsValid()) { DCHECK(!intersection.is_reversed()); Range range_x(GetGlyphXBoundary(run, intersection.start(), false), GetGlyphXBoundary(run, intersection.end(), false)); if (range_x.is_empty()) continue; range_x = Range(range_x.GetMin(), range_x.GetMax()); // Union this with the last range if they're adjacent. DCHECK(bounds.empty() || bounds.back().GetMax() <= range_x.GetMin()); if (!bounds.empty() && bounds.back().GetMax() == range_x.GetMin()) { range_x = Range(bounds.back().GetMin(), range_x.GetMax()); bounds.pop_back(); } bounds.push_back(range_x); } } for (size_t i = 0; i < bounds.size(); ++i) { std::vector current_rects = TextBoundsToViewBounds(bounds[i]); rects.insert(rects.end(), current_rects.begin(), current_rects.end()); } return rects; } size_t RenderTextWin::TextIndexToLayoutIndex(size_t index) const { DCHECK_LE(index, text().length()); ptrdiff_t i = obscured() ? UTF16IndexToOffset(text(), 0, index) : index; CHECK_GE(i, 0); // Clamp layout indices to the length of the text actually used for layout. return std::min(GetLayoutText().length(), i); } size_t RenderTextWin::LayoutIndexToTextIndex(size_t index) const { if (!obscured()) return index; DCHECK_LE(index, GetLayoutText().length()); const size_t text_index = UTF16OffsetToIndex(text(), 0, index); DCHECK_LE(text_index, text().length()); return text_index; } bool RenderTextWin::IsValidCursorIndex(size_t index) { if (index == 0 || index == text().length()) return true; if (!IsValidLogicalIndex(index)) return false; EnsureLayout(); // Disallow indices amid multi-character graphemes by checking glyph bounds. // These characters are not surrogate-pairs, but may yield a single glyph: // \x0915\x093f - (ki) - one of many Devanagari biconsonantal conjuncts. // \x0e08\x0e33 - (cho chan + sara am) - a Thai consonant and vowel pair. return GetGlyphBounds(index) != GetGlyphBounds(index - 1); } void RenderTextWin::ResetLayout() { // Layout is performed lazily as needed for drawing/metrics. needs_layout_ = true; } void RenderTextWin::EnsureLayout() { if (needs_layout_) { // TODO(msw): Skip complex processing if ScriptIsComplex returns false. ItemizeLogicalText(); if (!runs_.empty()) LayoutVisualText(); needs_layout_ = false; std::vector lines; set_lines(&lines); } // Compute lines if they're not valid. This is separate from the layout steps // above to avoid text layout and shaping when we resize |display_rect_|. if (lines().empty()) { DCHECK(!needs_layout_); std::vector lines; internal::LineBreaker line_breaker(display_rect().width() - 1, font_list().GetBaseline(), font_list().GetHeight(), multiline(), GetLayoutText().c_str(), multiline() ? &GetLineBreaks() : NULL, runs_); for (size_t i = 0; i < runs_.size(); ++i) line_breaker.AddRun(visual_to_logical_[i]); line_breaker.Finalize(&lines, &multiline_string_size_); DCHECK(!lines.empty()); #ifndef NDEBUG CheckLineIntegrity(lines, runs_); #endif set_lines(&lines); } } void RenderTextWin::DrawVisualText(Canvas* canvas) { DCHECK(!needs_layout_); DCHECK(!lines().empty()); std::vector pos; internal::SkiaTextRenderer renderer(canvas); ApplyFadeEffects(&renderer); ApplyTextShadows(&renderer); renderer.SetFontRenderParams( font_list().GetPrimaryFont().GetFontRenderParams(), background_is_transparent()); ApplyCompositionAndSelectionStyles(); for (size_t i = 0; i < lines().size(); ++i) { const internal::Line& line = lines()[i]; const Vector2d line_offset = GetLineOffset(i); // Skip painting empty lines or lines outside the display rect area. if (!display_rect().Intersects(Rect(PointAtOffsetFromOrigin(line_offset), ToCeiledSize(line.size)))) continue; const Vector2d text_offset = line_offset + Vector2d(0, line.baseline); int preceding_segment_widths = 0; for (size_t j = 0; j < line.segments.size(); ++j) { const internal::LineSegment* segment = &line.segments[j]; const int segment_width = segment->x_range.length(); const internal::TextRun* run = runs_[segment->run]; DCHECK(!segment->char_range.is_empty()); DCHECK(run->range.Contains(segment->char_range)); Range glyph_range = CharRangeToGlyphRange(*run, segment->char_range); DCHECK(!glyph_range.is_empty()); // Skip painting segments outside the display rect area. if (!multiline()) { const Rect segment_bounds(PointAtOffsetFromOrigin(line_offset) + Vector2d(preceding_segment_widths, 0), Size(segment_width, line.size.height())); if (!display_rect().Intersects(segment_bounds)) { preceding_segment_widths += segment_width; continue; } } // |pos| contains the positions of glyphs. An extra terminal |pos| entry // is added to simplify width calculations. int segment_x = preceding_segment_widths; pos.resize(glyph_range.length() + 1); for (size_t k = glyph_range.start(); k < glyph_range.end(); ++k) { pos[k - glyph_range.start()].set( SkIntToScalar(text_offset.x() + run->offsets[k].du + segment_x), SkIntToScalar(text_offset.y() - run->offsets[k].dv)); segment_x += run->advance_widths[k]; } pos.back().set(SkIntToScalar(text_offset.x() + segment_x), SkIntToScalar(text_offset.y())); renderer.SetTextSize(SkIntToScalar(run->font.GetFontSize())); renderer.SetFontFamilyWithStyle(run->font.GetFontName(), run->font_style); for (BreakList::const_iterator it = colors().GetBreak(segment->char_range.start()); it != colors().breaks().end() && it->first < segment->char_range.end(); ++it) { const Range intersection = colors().GetRange(it).Intersect(segment->char_range); const Range colored_glyphs = CharRangeToGlyphRange(*run, intersection); // The range may be empty if a portion of a multi-character grapheme is // selected, yielding two colors for a single glyph. For now, this just // paints the glyph with a single style, but it should paint it twice, // clipped according to selection bounds. See http://crbug.com/366786 if (colored_glyphs.is_empty()) continue; DCHECK(glyph_range.Contains(colored_glyphs)); const SkPoint& start_pos = pos[colored_glyphs.start() - glyph_range.start()]; const SkPoint& end_pos = pos[colored_glyphs.end() - glyph_range.start()]; renderer.SetForegroundColor(it->second); renderer.DrawPosText(&start_pos, &run->glyphs[colored_glyphs.start()], colored_glyphs.length()); int start_x = SkScalarRoundToInt(start_pos.x()); renderer.DrawDecorations( start_x, text_offset.y(), SkScalarRoundToInt(end_pos.x()) - start_x, run->underline, run->strike, run->diagonal_strike); } preceding_segment_widths += segment_width; } renderer.EndDiagonalStrike(); } UndoCompositionAndSelectionStyles(); } void RenderTextWin::ItemizeLogicalText() { runs_.clear(); string_width_ = 0; multiline_string_size_ = Size(); // Set Uniscribe's base text direction. script_state_.uBidiLevel = (GetTextDirection() == base::i18n::RIGHT_TO_LEFT) ? 1 : 0; const base::string16& layout_text = GetLayoutText(); if (layout_text.empty()) return; HRESULT hr = E_OUTOFMEMORY; int script_items_count = 0; std::vector script_items; const size_t layout_text_length = layout_text.length(); // Ensure that |kMaxRuns| is attempted and the loop terminates afterward. for (size_t runs = kGuessRuns; hr == E_OUTOFMEMORY && runs <= kMaxRuns; runs = std::max(runs + 1, std::min(runs * 2, kMaxRuns))) { // Derive the array of Uniscribe script items from the logical text. // ScriptItemize always adds a terminal array item so that the length of // the last item can be derived from the terminal SCRIPT_ITEM::iCharPos. script_items.resize(runs); hr = ScriptItemize(layout_text.c_str(), layout_text_length, runs - 1, &script_control_, &script_state_, &script_items[0], &script_items_count); } DCHECK(SUCCEEDED(hr)); if (!SUCCEEDED(hr) || script_items_count <= 0) return; // Temporarily apply composition underlines and selection colors. ApplyCompositionAndSelectionStyles(); // Build the list of runs from the script items and ranged styles. Use an // empty color BreakList to avoid breaking runs at color boundaries. BreakList empty_colors; empty_colors.SetMax(layout_text_length); internal::StyleIterator style(empty_colors, styles()); SCRIPT_ITEM* script_item = &script_items[0]; const size_t max_run_length = kMaxGlyphs / 2; for (size_t run_break = 0; run_break < layout_text_length;) { internal::TextRun* run = new internal::TextRun(); run->range.set_start(run_break); run->font = font_list().GetPrimaryFont(); run->font_style = (style.style(BOLD) ? Font::BOLD : 0) | (style.style(ITALIC) ? Font::ITALIC : 0); DeriveFontIfNecessary(run->font.GetFontSize(), run->font.GetHeight(), run->font_style, &run->font); run->strike = style.style(STRIKE); run->diagonal_strike = style.style(DIAGONAL_STRIKE); run->underline = style.style(UNDERLINE); run->script_analysis = script_item->a; // Find the next break and advance the iterators as needed. const size_t script_item_break = (script_item + 1)->iCharPos; run_break = std::min(script_item_break, TextIndexToLayoutIndex(style.GetRange().end())); // Clamp run lengths to avoid exceeding the maximum supported glyph count. if ((run_break - run->range.start()) > max_run_length) { run_break = run->range.start() + max_run_length; if (!IsValidCodePointIndex(layout_text, run_break)) --run_break; } // Break runs adjacent to character substrings in certain code blocks. // This avoids using their fallback fonts for more characters than needed, // in cases like "\x25B6 Media Title", etc. http://crbug.com/278913 if (run_break > run->range.start()) { run_break = FindUnusualCharacter(layout_text, run->range.start(), run_break); } DCHECK(IsValidCodePointIndex(layout_text, run_break)); style.UpdatePosition(LayoutIndexToTextIndex(run_break)); if (script_item_break == run_break) script_item++; run->range.set_end(run_break); runs_.push_back(run); } // Undo the temporarily applied composition underlines and selection colors. UndoCompositionAndSelectionStyles(); } void RenderTextWin::LayoutVisualText() { DCHECK(!runs_.empty()); if (!cached_hdc_) cached_hdc_ = CreateCompatibleDC(NULL); HRESULT hr = E_FAIL; // Ensure ascent and descent are not smaller than ones of the font list. // Keep them tall enough to draw often-used characters. // For example, if a text field contains a Japanese character, which is // smaller than Latin ones, and then later a Latin one is inserted, this // ensures that the text baseline does not shift. int ascent = font_list().GetBaseline(); int descent = font_list().GetHeight() - font_list().GetBaseline(); for (size_t i = 0; i < runs_.size(); ++i) { internal::TextRun* run = runs_[i]; LayoutTextRun(run); ascent = std::max(ascent, run->font.GetBaseline()); descent = std::max(descent, run->font.GetHeight() - run->font.GetBaseline()); if (run->glyph_count > 0) { run->advance_widths.reset(new int[run->glyph_count]); run->offsets.reset(new GOFFSET[run->glyph_count]); hr = ScriptPlace(cached_hdc_, &run->script_cache, run->glyphs.get(), run->glyph_count, run->visible_attributes.get(), &(run->script_analysis), run->advance_widths.get(), run->offsets.get(), &(run->abc_widths)); DCHECK(SUCCEEDED(hr)); } } // Build the array of bidirectional embedding levels. scoped_ptr levels(new BYTE[runs_.size()]); for (size_t i = 0; i < runs_.size(); ++i) levels[i] = runs_[i]->script_analysis.s.uBidiLevel; // Get the maps between visual and logical run indices. visual_to_logical_.reset(new int[runs_.size()]); logical_to_visual_.reset(new int[runs_.size()]); hr = ScriptLayout(runs_.size(), levels.get(), visual_to_logical_.get(), logical_to_visual_.get()); DCHECK(SUCCEEDED(hr)); // Precalculate run width information. size_t preceding_run_widths = 0; for (size_t i = 0; i < runs_.size(); ++i) { internal::TextRun* run = runs_[visual_to_logical_[i]]; run->preceding_run_widths = preceding_run_widths; const ABC& abc = run->abc_widths; run->width = abc.abcA + abc.abcB + abc.abcC; preceding_run_widths += run->width; } string_width_ = preceding_run_widths; } void RenderTextWin::LayoutTextRun(internal::TextRun* run) { const size_t run_length = run->range.length(); const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); Font original_font = run->font; run->logical_clusters.reset(new WORD[run_length]); // Try shaping with |original_font|. Font current_font = original_font; int missing_count = CountCharsWithMissingGlyphs(run, ShapeTextRunWithFont(run, current_font)); if (missing_count == 0) return; // Keep track of the font that is able to display the greatest number of // characters for which ScriptShape() returned S_OK. This font will be used // in the case where no font is able to display the entire run. int best_partial_font_missing_char_count = missing_count; Font best_partial_font = current_font; // Try to shape with the cached font from previous runs, if any. std::map::const_iterator it = successful_substitute_fonts_.find(original_font.GetFontName()); if (it != successful_substitute_fonts_.end()) { current_font = it->second; missing_count = CountCharsWithMissingGlyphs(run, ShapeTextRunWithFont(run, current_font)); if (missing_count == 0) return; if (missing_count < best_partial_font_missing_char_count) { best_partial_font_missing_char_count = missing_count; best_partial_font = current_font; } } // Try finding a fallback font using a meta file. // TODO(msw|asvitkine): Support RenderText's font_list()? Font uniscribe_font; bool got_uniscribe_font = false; if (GetUniscribeFallbackFont(original_font, run_text, run_length, &uniscribe_font)) { got_uniscribe_font = true; current_font = uniscribe_font; missing_count = CountCharsWithMissingGlyphs(run, ShapeTextRunWithFont(run, current_font)); if (missing_count == 0) { successful_substitute_fonts_[original_font.GetFontName()] = current_font; return; } if (missing_count < best_partial_font_missing_char_count) { best_partial_font_missing_char_count = missing_count; best_partial_font = current_font; } } // Try fonts in the fallback list except the first, which is |original_font|. std::vector fonts = GetFallbackFontFamilies(original_font.GetFontName()); for (size_t i = 1; i < fonts.size(); ++i) { current_font = Font(fonts[i], original_font.GetFontSize()); missing_count = CountCharsWithMissingGlyphs(run, ShapeTextRunWithFont(run, current_font)); if (missing_count == 0) { successful_substitute_fonts_[original_font.GetFontName()] = current_font; return; } if (missing_count < best_partial_font_missing_char_count) { best_partial_font_missing_char_count = missing_count; best_partial_font = current_font; } } // Try fonts in the fallback list of the Uniscribe font. if (got_uniscribe_font) { fonts = GetFallbackFontFamilies(uniscribe_font.GetFontName()); for (size_t i = 1; i < fonts.size(); ++i) { current_font = Font(fonts[i], original_font.GetFontSize()); missing_count = CountCharsWithMissingGlyphs(run, ShapeTextRunWithFont(run, current_font)); if (missing_count == 0) { successful_substitute_fonts_[original_font.GetFontName()] = current_font; return; } if (missing_count < best_partial_font_missing_char_count) { best_partial_font_missing_char_count = missing_count; best_partial_font = current_font; } } } // If a font was able to partially display the run, use that now. if (best_partial_font_missing_char_count < static_cast(run_length)) { // Re-shape the run only if |best_partial_font| differs from the last font. if (best_partial_font.GetNativeFont() != run->font.GetNativeFont()) ShapeTextRunWithFont(run, best_partial_font); return; } // If no font was able to partially display the run, replace all glyphs // with |wgDefault| from the original font to ensure to they don't hold // garbage values. // First, clear the cache and select the original font on the HDC. ScriptFreeCache(&run->script_cache); run->font = original_font; SelectObject(cached_hdc_, run->font.GetNativeFont()); // Now, get the font's properties. SCRIPT_FONTPROPERTIES properties; memset(&properties, 0, sizeof(properties)); properties.cBytes = sizeof(properties); HRESULT hr = ScriptGetFontProperties(cached_hdc_, &run->script_cache, &properties); // The initial values for the "missing" glyph and the space glyph are taken // from the recommendations section of the OpenType spec: // https://www.microsoft.com/typography/otspec/recom.htm WORD missing_glyph = 0; WORD space_glyph = 3; if (hr == S_OK) { missing_glyph = properties.wgDefault; space_glyph = properties.wgBlank; } // Finally, initialize |glyph_count|, |glyphs|, |visible_attributes| and // |logical_clusters| on the run (since they may not have been set yet). run->glyph_count = run_length; memset(run->visible_attributes.get(), 0, run->glyph_count * sizeof(SCRIPT_VISATTR)); for (int i = 0; i < run->glyph_count; ++i) run->glyphs[i] = IsWhitespace(run_text[i]) ? space_glyph : missing_glyph; for (size_t i = 0; i < run_length; ++i) { run->logical_clusters[i] = static_cast(run->script_analysis.fRTL ? run_length - 1 - i : i); } // TODO(msw): Don't use SCRIPT_UNDEFINED. Apparently Uniscribe can // crash on certain surrogate pairs with SCRIPT_UNDEFINED. // See https://bugzilla.mozilla.org/show_bug.cgi?id=341500 // And http://maxradi.us/documents/uniscribe/ run->script_analysis.eScript = SCRIPT_UNDEFINED; } HRESULT RenderTextWin::ShapeTextRunWithFont(internal::TextRun* run, const Font& font) { // Update the run's font only if necessary. If the two fonts wrap the same // PlatformFontWin object, their native fonts will have the same value. if (run->font.GetNativeFont() != font.GetNativeFont()) { const int font_size = run->font.GetFontSize(); const int font_height = run->font.GetHeight(); run->font = font; DeriveFontIfNecessary(font_size, font_height, run->font_style, &run->font); ScriptFreeCache(&run->script_cache); } // Select the font desired for glyph generation. SelectObject(cached_hdc_, run->font.GetNativeFont()); HRESULT hr = E_OUTOFMEMORY; const size_t run_length = run->range.length(); const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); // Guess the expected number of glyphs from the length of the run. // MSDN suggests this at http://msdn.microsoft.com/en-us/library/dd368564.aspx size_t max_glyphs = static_cast(1.5 * run_length + 16); while (hr == E_OUTOFMEMORY && max_glyphs <= kMaxGlyphs) { run->glyph_count = 0; run->glyphs.reset(new WORD[max_glyphs]); run->visible_attributes.reset(new SCRIPT_VISATTR[max_glyphs]); hr = ScriptShape(cached_hdc_, &run->script_cache, run_text, run_length, max_glyphs, &run->script_analysis, run->glyphs.get(), run->logical_clusters.get(), run->visible_attributes.get(), &run->glyph_count); // Ensure that |kMaxGlyphs| is attempted and the loop terminates afterward. max_glyphs = std::max(max_glyphs + 1, std::min(max_glyphs * 2, kMaxGlyphs)); } return hr; } int RenderTextWin::CountCharsWithMissingGlyphs(internal::TextRun* run, HRESULT shaping_result) const { if (shaping_result != S_OK) { DCHECK_EQ(shaping_result, USP_E_SCRIPT_NOT_IN_FONT); return INT_MAX; } // If |hr| is S_OK, there could still be missing glyphs in the output. // http://msdn.microsoft.com/en-us/library/windows/desktop/dd368564.aspx int chars_not_missing_glyphs = 0; SCRIPT_FONTPROPERTIES properties; memset(&properties, 0, sizeof(properties)); properties.cBytes = sizeof(properties); ScriptGetFontProperties(cached_hdc_, &run->script_cache, &properties); const wchar_t* run_text = &(GetLayoutText()[run->range.start()]); for (size_t char_index = 0; char_index < run->range.length(); ++char_index) { const int glyph_index = run->logical_clusters[char_index]; DCHECK_GE(glyph_index, 0); DCHECK_LT(glyph_index, run->glyph_count); if (run->glyphs[glyph_index] == properties.wgDefault) continue; // Windows Vista sometimes returns glyphs equal to wgBlank (instead of // wgDefault), with fZeroWidth set. Treat such cases as having missing // glyphs if the corresponding character is not whitespace. // See: http://crbug.com/125629 if (run->glyphs[glyph_index] == properties.wgBlank && run->visible_attributes[glyph_index].fZeroWidth && !IsWhitespace(run_text[char_index]) && !IsUnicodeBidiControlCharacter(run_text[char_index])) { continue; } ++chars_not_missing_glyphs; } DCHECK_LE(chars_not_missing_glyphs, static_cast(run->range.length())); return run->range.length() - chars_not_missing_glyphs; } size_t RenderTextWin::GetRunContainingCaret(const SelectionModel& caret) const { DCHECK(!needs_layout_); size_t layout_position = TextIndexToLayoutIndex(caret.caret_pos()); LogicalCursorDirection affinity = caret.caret_affinity(); for (size_t run = 0; run < runs_.size(); ++run) if (RangeContainsCaret(runs_[run]->range, layout_position, affinity)) return run; return runs_.size(); } size_t RenderTextWin::GetRunContainingXCoord(int x) const { DCHECK(!needs_layout_); // Find the text run containing the argument point (assumed already offset). for (size_t run = 0; run < runs_.size(); ++run) { if ((runs_[run]->preceding_run_widths <= x) && ((runs_[run]->preceding_run_widths + runs_[run]->width) > x)) return run; } return runs_.size(); } SelectionModel RenderTextWin::FirstSelectionModelInsideRun( const internal::TextRun* run) { size_t position = LayoutIndexToTextIndex(run->range.start()); position = IndexOfAdjacentGrapheme(position, CURSOR_FORWARD); return SelectionModel(position, CURSOR_BACKWARD); } SelectionModel RenderTextWin::LastSelectionModelInsideRun( const internal::TextRun* run) { size_t position = LayoutIndexToTextIndex(run->range.end()); position = IndexOfAdjacentGrapheme(position, CURSOR_BACKWARD); return SelectionModel(position, CURSOR_FORWARD); } RenderText* RenderText::CreateNativeInstance() { return new RenderTextWin; } } // namespace gfx