// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include "ui/gfx/transform.h" #include #include #include #include "base/basictypes.h" #include "base/logging.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/box_f.h" #include "ui/gfx/point.h" #include "ui/gfx/point3_f.h" #include "ui/gfx/quad_f.h" #include "ui/gfx/transform_util.h" #include "ui/gfx/vector3d_f.h" namespace gfx { namespace { #define EXPECT_ROW1_EQ(a, b, c, d, transform) \ EXPECT_FLOAT_EQ((a), (transform).matrix().get(0, 0)); \ EXPECT_FLOAT_EQ((b), (transform).matrix().get(0, 1)); \ EXPECT_FLOAT_EQ((c), (transform).matrix().get(0, 2)); \ EXPECT_FLOAT_EQ((d), (transform).matrix().get(0, 3)); #define EXPECT_ROW2_EQ(a, b, c, d, transform) \ EXPECT_FLOAT_EQ((a), (transform).matrix().get(1, 0)); \ EXPECT_FLOAT_EQ((b), (transform).matrix().get(1, 1)); \ EXPECT_FLOAT_EQ((c), (transform).matrix().get(1, 2)); \ EXPECT_FLOAT_EQ((d), (transform).matrix().get(1, 3)); #define EXPECT_ROW3_EQ(a, b, c, d, transform) \ EXPECT_FLOAT_EQ((a), (transform).matrix().get(2, 0)); \ EXPECT_FLOAT_EQ((b), (transform).matrix().get(2, 1)); \ EXPECT_FLOAT_EQ((c), (transform).matrix().get(2, 2)); \ EXPECT_FLOAT_EQ((d), (transform).matrix().get(2, 3)); #define EXPECT_ROW4_EQ(a, b, c, d, transform) \ EXPECT_FLOAT_EQ((a), (transform).matrix().get(3, 0)); \ EXPECT_FLOAT_EQ((b), (transform).matrix().get(3, 1)); \ EXPECT_FLOAT_EQ((c), (transform).matrix().get(3, 2)); \ EXPECT_FLOAT_EQ((d), (transform).matrix().get(3, 3)); \ // Checking float values for equality close to zero is not robust using // EXPECT_FLOAT_EQ (see gtest documentation). So, to verify rotation matrices, // we must use a looser absolute error threshold in some places. #define EXPECT_ROW1_NEAR(a, b, c, d, transform, errorThreshold) \ EXPECT_NEAR((a), (transform).matrix().get(0, 0), (errorThreshold)); \ EXPECT_NEAR((b), (transform).matrix().get(0, 1), (errorThreshold)); \ EXPECT_NEAR((c), (transform).matrix().get(0, 2), (errorThreshold)); \ EXPECT_NEAR((d), (transform).matrix().get(0, 3), (errorThreshold)); #define EXPECT_ROW2_NEAR(a, b, c, d, transform, errorThreshold) \ EXPECT_NEAR((a), (transform).matrix().get(1, 0), (errorThreshold)); \ EXPECT_NEAR((b), (transform).matrix().get(1, 1), (errorThreshold)); \ EXPECT_NEAR((c), (transform).matrix().get(1, 2), (errorThreshold)); \ EXPECT_NEAR((d), (transform).matrix().get(1, 3), (errorThreshold)); #define EXPECT_ROW3_NEAR(a, b, c, d, transform, errorThreshold) \ EXPECT_NEAR((a), (transform).matrix().get(2, 0), (errorThreshold)); \ EXPECT_NEAR((b), (transform).matrix().get(2, 1), (errorThreshold)); \ EXPECT_NEAR((c), (transform).matrix().get(2, 2), (errorThreshold)); \ EXPECT_NEAR((d), (transform).matrix().get(2, 3), (errorThreshold)); bool PointsAreNearlyEqual(const Point3F& lhs, const Point3F& rhs) { float epsilon = 0.0001f; return lhs.SquaredDistanceTo(rhs) < epsilon; } bool MatricesAreNearlyEqual(const Transform& lhs, const Transform& rhs) { float epsilon = 0.0001f; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { if (std::abs(lhs.matrix().get(row, col) - rhs.matrix().get(row, col)) > epsilon) return false; } } return true; } void InitializeTestMatrix(Transform* transform) { SkMatrix44& matrix = transform->matrix(); matrix.set(0, 0, 10.f); matrix.set(1, 0, 11.f); matrix.set(2, 0, 12.f); matrix.set(3, 0, 13.f); matrix.set(0, 1, 14.f); matrix.set(1, 1, 15.f); matrix.set(2, 1, 16.f); matrix.set(3, 1, 17.f); matrix.set(0, 2, 18.f); matrix.set(1, 2, 19.f); matrix.set(2, 2, 20.f); matrix.set(3, 2, 21.f); matrix.set(0, 3, 22.f); matrix.set(1, 3, 23.f); matrix.set(2, 3, 24.f); matrix.set(3, 3, 25.f); // Sanity check EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, (*transform)); EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, (*transform)); EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, (*transform)); EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, (*transform)); } void InitializeTestMatrix2(Transform* transform) { SkMatrix44& matrix = transform->matrix(); matrix.set(0, 0, 30.f); matrix.set(1, 0, 31.f); matrix.set(2, 0, 32.f); matrix.set(3, 0, 33.f); matrix.set(0, 1, 34.f); matrix.set(1, 1, 35.f); matrix.set(2, 1, 36.f); matrix.set(3, 1, 37.f); matrix.set(0, 2, 38.f); matrix.set(1, 2, 39.f); matrix.set(2, 2, 40.f); matrix.set(3, 2, 41.f); matrix.set(0, 3, 42.f); matrix.set(1, 3, 43.f); matrix.set(2, 3, 44.f); matrix.set(3, 3, 45.f); // Sanity check EXPECT_ROW1_EQ(30.0f, 34.0f, 38.0f, 42.0f, (*transform)); EXPECT_ROW2_EQ(31.0f, 35.0f, 39.0f, 43.0f, (*transform)); EXPECT_ROW3_EQ(32.0f, 36.0f, 40.0f, 44.0f, (*transform)); EXPECT_ROW4_EQ(33.0f, 37.0f, 41.0f, 45.0f, (*transform)); } const SkMScalar kApproxZero = SkFloatToMScalar(std::numeric_limits::epsilon()); const SkMScalar kApproxOne = 1 - kApproxZero; void InitializeApproxIdentityMatrix(Transform* transform) { SkMatrix44& matrix = transform->matrix(); matrix.set(0, 0, kApproxOne); matrix.set(0, 1, kApproxZero); matrix.set(0, 2, kApproxZero); matrix.set(0, 3, kApproxZero); matrix.set(1, 0, kApproxZero); matrix.set(1, 1, kApproxOne); matrix.set(1, 2, kApproxZero); matrix.set(1, 3, kApproxZero); matrix.set(2, 0, kApproxZero); matrix.set(2, 1, kApproxZero); matrix.set(2, 2, kApproxOne); matrix.set(2, 3, kApproxZero); matrix.set(3, 0, kApproxZero); matrix.set(3, 1, kApproxZero); matrix.set(3, 2, kApproxZero); matrix.set(3, 3, kApproxOne); } #ifdef SK_MSCALAR_IS_DOUBLE #define ERROR_THRESHOLD 1e-14 #else #define ERROR_THRESHOLD 1e-7 #endif #define LOOSE_ERROR_THRESHOLD 1e-7 TEST(XFormTest, Equality) { Transform lhs, rhs, interpolated; rhs.matrix().set3x3(1, 2, 3, 4, 5, 6, 7, 8, 9); interpolated = lhs; for (int i = 0; i <= 100; ++i) { for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { float a = lhs.matrix().get(row, col); float b = rhs.matrix().get(row, col); float t = i / 100.0f; interpolated.matrix().set(row, col, a + (b - a) * t); } } if (i == 100) { EXPECT_TRUE(rhs == interpolated); } else { EXPECT_TRUE(rhs != interpolated); } } lhs = Transform(); rhs = Transform(); for (int i = 1; i < 100; ++i) { lhs.MakeIdentity(); rhs.MakeIdentity(); lhs.Translate(i, i); rhs.Translate(-i, -i); EXPECT_TRUE(lhs != rhs); rhs.Translate(2*i, 2*i); EXPECT_TRUE(lhs == rhs); } } TEST(XFormTest, ConcatTranslate) { static const struct TestCase { int x1; int y1; float tx; float ty; int x2; int y2; } test_cases[] = { { 0, 0, 10.0f, 20.0f, 10, 20 }, { 0, 0, -10.0f, -20.0f, 0, 0 }, { 0, 0, -10.0f, -20.0f, -10, -20 }, { 0, 0, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 10, 20 }, }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform translation; translation.Translate(value.tx, value.ty); xform = translation * xform; Point3F p1(value.x1, value.y1, 0); Point3F p2(value.x2, value.y2, 0); xform.TransformPoint(&p1); if (value.tx == value.tx && value.ty == value.ty) { EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); } } } TEST(XFormTest, ConcatScale) { static const struct TestCase { int before; float scale; int after; } test_cases[] = { { 1, 10.0f, 10 }, { 1, .1f, 1 }, { 1, 100.0f, 100 }, { 1, -1.0f, -100 }, { 1, std::numeric_limits::quiet_NaN(), 1 } }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform scale; scale.Scale(value.scale, value.scale); xform = scale * xform; Point3F p1(value.before, value.before, 0); Point3F p2(value.after, value.after, 0); xform.TransformPoint(&p1); if (value.scale == value.scale) { EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); } } } TEST(XFormTest, ConcatRotate) { static const struct TestCase { int x1; int y1; float degrees; int x2; int y2; } test_cases[] = { { 1, 0, 90.0f, 0, 1 }, { 1, 0, -90.0f, 1, 0 }, { 1, 0, 90.0f, 0, 1 }, { 1, 0, 360.0f, 0, 1 }, { 1, 0, 0.0f, 0, 1 }, { 1, 0, std::numeric_limits::quiet_NaN(), 1, 0 } }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform rotation; rotation.Rotate(value.degrees); xform = rotation * xform; Point3F p1(value.x1, value.y1, 0); Point3F p2(value.x2, value.y2, 0); xform.TransformPoint(&p1); if (value.degrees == value.degrees) { EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); } } } TEST(XFormTest, SetTranslate) { static const struct TestCase { int x1; int y1; float tx; float ty; int x2; int y2; } test_cases[] = { { 0, 0, 10.0f, 20.0f, 10, 20 }, { 10, 20, 10.0f, 20.0f, 20, 40 }, { 10, 20, 0.0f, 0.0f, 10, 20 }, { 0, 0, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 0, 0 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; for (int k = 0; k < 3; ++k) { Point3F p0, p1, p2; Transform xform; switch (k) { case 0: p1.SetPoint(value.x1, 0, 0); p2.SetPoint(value.x2, 0, 0); xform.Translate(value.tx, 0.0); break; case 1: p1.SetPoint(0, value.y1, 0); p2.SetPoint(0, value.y2, 0); xform.Translate(0.0, value.ty); break; case 2: p1.SetPoint(value.x1, value.y1, 0); p2.SetPoint(value.x2, value.y2, 0); xform.Translate(value.tx, value.ty); break; } p0 = p1; xform.TransformPoint(&p1); if (value.tx == value.tx && value.ty == value.ty) { EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); xform.TransformPointReverse(&p1); EXPECT_TRUE(PointsAreNearlyEqual(p1, p0)); } } } } TEST(XFormTest, SetScale) { static const struct TestCase { int before; float s; int after; } test_cases[] = { { 1, 10.0f, 10 }, { 1, 1.0f, 1 }, { 1, 0.0f, 0 }, { 0, 10.0f, 0 }, { 1, std::numeric_limits::quiet_NaN(), 0 }, }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; for (int k = 0; k < 3; ++k) { Point3F p0, p1, p2; Transform xform; switch (k) { case 0: p1.SetPoint(value.before, 0, 0); p2.SetPoint(value.after, 0, 0); xform.Scale(value.s, 1.0); break; case 1: p1.SetPoint(0, value.before, 0); p2.SetPoint(0, value.after, 0); xform.Scale(1.0, value.s); break; case 2: p1.SetPoint(value.before, value.before, 0); p2.SetPoint(value.after, value.after, 0); xform.Scale(value.s, value.s); break; } p0 = p1; xform.TransformPoint(&p1); if (value.s == value.s) { EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); if (value.s != 0.0f) { xform.TransformPointReverse(&p1); EXPECT_TRUE(PointsAreNearlyEqual(p1, p0)); } } } } } TEST(XFormTest, SetRotate) { static const struct SetRotateCase { int x; int y; float degree; int xprime; int yprime; } set_rotate_cases[] = { { 100, 0, 90.0f, 0, 100 }, { 0, 0, 90.0f, 0, 0 }, { 0, 100, 90.0f, -100, 0 }, { 0, 1, -90.0f, 1, 0 }, { 100, 0, 0.0f, 100, 0 }, { 0, 0, 0.0f, 0, 0 }, { 0, 0, std::numeric_limits::quiet_NaN(), 0, 0 }, { 100, 0, 360.0f, 100, 0 } }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(set_rotate_cases); ++i) { const SetRotateCase& value = set_rotate_cases[i]; Point3F p0; Point3F p1(value.x, value.y, 0); Point3F p2(value.xprime, value.yprime, 0); p0 = p1; Transform xform; xform.Rotate(value.degree); // just want to make sure that we don't crash in the case of NaN. if (value.degree == value.degree) { xform.TransformPoint(&p1); EXPECT_TRUE(PointsAreNearlyEqual(p1, p2)); xform.TransformPointReverse(&p1); EXPECT_TRUE(PointsAreNearlyEqual(p1, p0)); } } } // 2D tests TEST(XFormTest, ConcatTranslate2D) { static const struct TestCase { int x1; int y1; float tx; float ty; int x2; int y2; } test_cases[] = { { 0, 0, 10.0f, 20.0f, 10, 20}, { 0, 0, -10.0f, -20.0f, 0, 0}, { 0, 0, -10.0f, -20.0f, -10, -20}, { 0, 0, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 10, 20}, }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform translation; translation.Translate(value.tx, value.ty); xform = translation * xform; Point p1(value.x1, value.y1); Point p2(value.x2, value.y2); xform.TransformPoint(&p1); if (value.tx == value.tx && value.ty == value.ty) { EXPECT_EQ(p1.x(), p2.x()); EXPECT_EQ(p1.y(), p2.y()); } } } TEST(XFormTest, ConcatScale2D) { static const struct TestCase { int before; float scale; int after; } test_cases[] = { { 1, 10.0f, 10}, { 1, .1f, 1}, { 1, 100.0f, 100}, { 1, -1.0f, -100}, { 1, std::numeric_limits::quiet_NaN(), 1} }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform scale; scale.Scale(value.scale, value.scale); xform = scale * xform; Point p1(value.before, value.before); Point p2(value.after, value.after); xform.TransformPoint(&p1); if (value.scale == value.scale) { EXPECT_EQ(p1.x(), p2.x()); EXPECT_EQ(p1.y(), p2.y()); } } } TEST(XFormTest, ConcatRotate2D) { static const struct TestCase { int x1; int y1; float degrees; int x2; int y2; } test_cases[] = { { 1, 0, 90.0f, 0, 1}, { 1, 0, -90.0f, 1, 0}, { 1, 0, 90.0f, 0, 1}, { 1, 0, 360.0f, 0, 1}, { 1, 0, 0.0f, 0, 1}, { 1, 0, std::numeric_limits::quiet_NaN(), 1, 0} }; Transform xform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; Transform rotation; rotation.Rotate(value.degrees); xform = rotation * xform; Point p1(value.x1, value.y1); Point p2(value.x2, value.y2); xform.TransformPoint(&p1); if (value.degrees == value.degrees) { EXPECT_EQ(p1.x(), p2.x()); EXPECT_EQ(p1.y(), p2.y()); } } } TEST(XFormTest, SetTranslate2D) { static const struct TestCase { int x1; int y1; float tx; float ty; int x2; int y2; } test_cases[] = { { 0, 0, 10.0f, 20.0f, 10, 20}, { 10, 20, 10.0f, 20.0f, 20, 40}, { 10, 20, 0.0f, 0.0f, 10, 20}, { 0, 0, std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN(), 0, 0} }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; for (int j = -1; j < 2; ++j) { for (int k = 0; k < 3; ++k) { float epsilon = 0.0001f; Point p0, p1, p2; Transform xform; switch (k) { case 0: p1.SetPoint(value.x1, 0); p2.SetPoint(value.x2, 0); xform.Translate(value.tx + j * epsilon, 0.0); break; case 1: p1.SetPoint(0, value.y1); p2.SetPoint(0, value.y2); xform.Translate(0.0, value.ty + j * epsilon); break; case 2: p1.SetPoint(value.x1, value.y1); p2.SetPoint(value.x2, value.y2); xform.Translate(value.tx + j * epsilon, value.ty + j * epsilon); break; } p0 = p1; xform.TransformPoint(&p1); if (value.tx == value.tx && value.ty == value.ty) { EXPECT_EQ(p1.x(), p2.x()); EXPECT_EQ(p1.y(), p2.y()); xform.TransformPointReverse(&p1); EXPECT_EQ(p1.x(), p0.x()); EXPECT_EQ(p1.y(), p0.y()); } } } } } TEST(XFormTest, SetScale2D) { static const struct TestCase { int before; float s; int after; } test_cases[] = { { 1, 10.0f, 10}, { 1, 1.0f, 1}, { 1, 0.0f, 0}, { 0, 10.0f, 0}, { 1, std::numeric_limits::quiet_NaN(), 0}, }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; for (int j = -1; j < 2; ++j) { for (int k = 0; k < 3; ++k) { float epsilon = 0.0001f; Point p0, p1, p2; Transform xform; switch (k) { case 0: p1.SetPoint(value.before, 0); p2.SetPoint(value.after, 0); xform.Scale(value.s + j * epsilon, 1.0); break; case 1: p1.SetPoint(0, value.before); p2.SetPoint(0, value.after); xform.Scale(1.0, value.s + j * epsilon); break; case 2: p1.SetPoint(value.before, value.before); p2.SetPoint(value.after, value.after); xform.Scale(value.s + j * epsilon, value.s + j * epsilon); break; } p0 = p1; xform.TransformPoint(&p1); if (value.s == value.s) { EXPECT_EQ(p1.x(), p2.x()); EXPECT_EQ(p1.y(), p2.y()); if (value.s != 0.0f) { xform.TransformPointReverse(&p1); EXPECT_EQ(p1.x(), p0.x()); EXPECT_EQ(p1.y(), p0.y()); } } } } } } TEST(XFormTest, SetRotate2D) { static const struct SetRotateCase { int x; int y; float degree; int xprime; int yprime; } set_rotate_cases[] = { { 100, 0, 90.0f, 0, 100}, { 0, 0, 90.0f, 0, 0}, { 0, 100, 90.0f, -100, 0}, { 0, 1, -90.0f, 1, 0}, { 100, 0, 0.0f, 100, 0}, { 0, 0, 0.0f, 0, 0}, { 0, 0, std::numeric_limits::quiet_NaN(), 0, 0}, { 100, 0, 360.0f, 100, 0} }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(set_rotate_cases); ++i) { const SetRotateCase& value = set_rotate_cases[i]; for (int j = 1; j >= -1; --j) { float epsilon = 0.1f; Point pt(value.x, value.y); Transform xform; // should be invariant to small floating point errors. xform.Rotate(value.degree + j * epsilon); // just want to make sure that we don't crash in the case of NaN. if (value.degree == value.degree) { xform.TransformPoint(&pt); EXPECT_EQ(value.xprime, pt.x()); EXPECT_EQ(value.yprime, pt.y()); xform.TransformPointReverse(&pt); EXPECT_EQ(pt.x(), value.x); EXPECT_EQ(pt.y(), value.y); } } } } TEST(XFormTest, TransformPointWithExtremePerspective) { Point3F point(1.f, 1.f, 1.f); Transform perspective; perspective.ApplyPerspectiveDepth(1.f); Point3F transformed = point; perspective.TransformPoint(&transformed); EXPECT_EQ(point.ToString(), transformed.ToString()); transformed = point; perspective.MakeIdentity(); perspective.ApplyPerspectiveDepth(1.1f); perspective.TransformPoint(&transformed); EXPECT_FLOAT_EQ(11.f, transformed.x()); EXPECT_FLOAT_EQ(11.f, transformed.y()); EXPECT_FLOAT_EQ(11.f, transformed.z()); } TEST(XFormTest, BlendTranslate) { Transform from; for (int i = -5; i < 15; ++i) { Transform to; to.Translate3d(1, 1, 1); double t = i / 9.0; EXPECT_TRUE(to.Blend(from, t)); EXPECT_FLOAT_EQ(t, to.matrix().get(0, 3)); EXPECT_FLOAT_EQ(t, to.matrix().get(1, 3)); EXPECT_FLOAT_EQ(t, to.matrix().get(2, 3)); } } TEST(XFormTest, BlendRotate) { Vector3dF axes[] = { Vector3dF(1, 0, 0), Vector3dF(0, 1, 0), Vector3dF(0, 0, 1), Vector3dF(1, 1, 1) }; Transform from; for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) { for (int i = -5; i < 15; ++i) { Transform to; to.RotateAbout(axes[index], 90); double t = i / 9.0; EXPECT_TRUE(to.Blend(from, t)); Transform expected; expected.RotateAbout(axes[index], 90 * t); EXPECT_TRUE(MatricesAreNearlyEqual(expected, to)); } } } TEST(XFormTest, BlendRotateFollowsShortestPath) { // Verify that we interpolate along the shortest path regardless of whether // this path crosses the 180-degree point. Vector3dF axes[] = { Vector3dF(1, 0, 0), Vector3dF(0, 1, 0), Vector3dF(0, 0, 1), Vector3dF(1, 1, 1) }; for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) { for (int i = -5; i < 15; ++i) { Transform from1; from1.RotateAbout(axes[index], 130.0); Transform to1; to1.RotateAbout(axes[index], 175.0); Transform from2; from2.RotateAbout(axes[index], 140.0); Transform to2; to2.RotateAbout(axes[index], 185.0); double t = i / 9.0; EXPECT_TRUE(to1.Blend(from1, t)); EXPECT_TRUE(to2.Blend(from2, t)); Transform expected1; expected1.RotateAbout(axes[index], 130.0 + 45.0 * t); Transform expected2; expected2.RotateAbout(axes[index], 140.0 + 45.0 * t); EXPECT_TRUE(MatricesAreNearlyEqual(expected1, to1)); EXPECT_TRUE(MatricesAreNearlyEqual(expected2, to2)); } } } TEST(XFormTest, CanBlend180DegreeRotation) { Vector3dF axes[] = { Vector3dF(1, 0, 0), Vector3dF(0, 1, 0), Vector3dF(0, 0, 1), Vector3dF(1, 1, 1) }; Transform from; for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) { for (int i = -5; i < 15; ++i) { Transform to; to.RotateAbout(axes[index], 180.0); double t = i / 9.0; EXPECT_TRUE(to.Blend(from, t)); // A 180 degree rotation is exactly opposite on the sphere, therefore // either great circle arc to it is equivalent (and numerical precision // will determine which is closer). Test both directions. Transform expected1; expected1.RotateAbout(axes[index], 180.0 * t); Transform expected2; expected2.RotateAbout(axes[index], -180.0 * t); EXPECT_TRUE(MatricesAreNearlyEqual(expected1, to) || MatricesAreNearlyEqual(expected2, to)) << "axis: " << index << ", i: " << i; } } } TEST(XFormTest, BlendScale) { Transform from; for (int i = -5; i < 15; ++i) { Transform to; to.Scale3d(5, 4, 3); double t = i / 9.0; EXPECT_TRUE(to.Blend(from, t)); EXPECT_FLOAT_EQ(t * 4 + 1, to.matrix().get(0, 0)) << "i: " << i; EXPECT_FLOAT_EQ(t * 3 + 1, to.matrix().get(1, 1)) << "i: " << i; EXPECT_FLOAT_EQ(t * 2 + 1, to.matrix().get(2, 2)) << "i: " << i; } } TEST(XFormTest, BlendSkew) { Transform from; for (int i = 0; i < 2; ++i) { Transform to; to.SkewX(10); to.SkewY(5); double t = i; Transform expected; expected.SkewX(t * 10); expected.SkewY(t * 5); EXPECT_TRUE(to.Blend(from, t)); EXPECT_TRUE(MatricesAreNearlyEqual(expected, to)); } } TEST(XFormTest, ExtrapolateSkew) { Transform from; for (int i = -1; i < 2; ++i) { Transform to; to.SkewX(20); double t = i; Transform expected; expected.SkewX(t * 20); EXPECT_TRUE(to.Blend(from, t)); EXPECT_TRUE(MatricesAreNearlyEqual(expected, to)); } } TEST(XFormTest, BlendPerspective) { Transform from; from.ApplyPerspectiveDepth(200); for (int i = -1; i < 3; ++i) { Transform to; to.ApplyPerspectiveDepth(800); double t = i; double depth = 1.0 / ((1.0 / 200) * (1.0 - t) + (1.0 / 800) * t); Transform expected; expected.ApplyPerspectiveDepth(depth); EXPECT_TRUE(to.Blend(from, t)); EXPECT_TRUE(MatricesAreNearlyEqual(expected, to)); } } TEST(XFormTest, BlendIdentity) { Transform from; Transform to; EXPECT_TRUE(to.Blend(from, 0.5)); EXPECT_EQ(to, from); } TEST(XFormTest, CannotBlendSingularMatrix) { Transform from; Transform to; to.matrix().set(1, 1, SkDoubleToMScalar(0)); EXPECT_FALSE(to.Blend(from, 0.5)); } TEST(XFormTest, VerifyBlendForTranslation) { Transform from; from.Translate3d(100.0, 200.0, 100.0); Transform to; to.Translate3d(200.0, 100.0, 300.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); to = Transform(); to.Translate3d(200.0, 100.0, 300.0); to.Blend(from, 0.25); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 125.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 175.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 150.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.Translate3d(200.0, 100.0, 300.0); to.Blend(from, 0.5); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 150.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 150.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 200.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.Translate3d(200.0, 100.0, 300.0); to.Blend(from, 1.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 200.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 100.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 300.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForScale) { Transform from; from.Scale3d(100.0, 200.0, 100.0); Transform to; to.Scale3d(200.0, 100.0, 300.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); to = Transform(); to.Scale3d(200.0, 100.0, 300.0); to.Blend(from, 0.25); EXPECT_ROW1_EQ(125.0f, 0.0f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 175.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 150.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.Scale3d(200.0, 100.0, 300.0); to.Blend(from, 0.5); EXPECT_ROW1_EQ(150.0f, 0.0f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 150.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 200.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.Scale3d(200.0, 100.0, 300.0); to.Blend(from, 1.0); EXPECT_ROW1_EQ(200.0f, 0.0f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 100.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 300.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForSkewX) { Transform from; from.SkewX(0.0); Transform to; to.SkewX(45.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); to = Transform(); to.SkewX(45.0); to.Blend(from, 0.5); EXPECT_ROW1_EQ(1.0f, 0.5f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.SkewX(45.0); to.Blend(from, 0.25); EXPECT_ROW1_EQ(1.0f, 0.25f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.SkewX(45.0); to.Blend(from, 1.0); EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, to); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForSkewY) { // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix // is inherently underconstrained, and so it does not always compute the // originally intended skew parameters. The current implementation uses QR // decomposition, which decomposes the shear into a rotation + non-uniform // scale. // // It is unlikely that the decomposition implementation will need to change // very often, so to get any test coverage, the compromise is to verify the // exact matrix that the.Blend() operation produces. // // This problem also potentially exists for skewX, but the current QR // decomposition implementation just happens to decompose those test // matrices intuitively. // // Unfortunately, this case suffers from uncomfortably large precision // error. Transform from; from.SkewY(0.0); Transform to; to.SkewY(45.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); to = Transform(); to.SkewY(45.0); to.Blend(from, 0.25); EXPECT_ROW1_NEAR(1.0823489449280947471976333, 0.0464370719145053845178239, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.2152925909665224513123150, 0.9541702441750861130032035, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.SkewY(45.0); to.Blend(from, 0.5); EXPECT_ROW1_NEAR(1.1152212925809066312865525, 0.0676495144007326631996335, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.4619397844342648662419037, 0.9519009045724774464858342, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.SkewY(45.0); to.Blend(from, 1.0); EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1.0, 1.0, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForRotationAboutX) { // Even though.Blending uses quaternions, axis-aligned rotations should. // Blend the same with quaternions or Euler angles. So we can test // rotation.Blending by comparing against manually specified matrices from // Euler angles. Transform from; from.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 0.0); Transform to; to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0); to.Blend(from, 0.25); EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, std::cos(expectedRotationAngle), -std::sin(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, std::sin(expectedRotationAngle), std::cos(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); expectedRotationAngle = 45.0 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0); to.Blend(from, 0.5); EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, std::cos(expectedRotationAngle), -std::sin(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, std::sin(expectedRotationAngle), std::cos(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0); to.Blend(from, 1.0); EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForRotationAboutY) { Transform from; from.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 0.0); Transform to; to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0); to.Blend(from, 0.25); EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle), 0.0, std::sin(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-std::sin(expectedRotationAngle), 0.0, std::cos(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); expectedRotationAngle = 45.0 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0); to.Blend(from, 0.5); EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle), 0.0, std::sin(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-std::sin(expectedRotationAngle), 0.0, std::cos(expectedRotationAngle), 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0); to.Blend(from, 1.0); EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForRotationAboutZ) { Transform from; from.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 0.0); Transform to; to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0); to.Blend(from, 0.0); EXPECT_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0); to.Blend(from, 0.25); EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle), -std::sin(expectedRotationAngle), 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(std::sin(expectedRotationAngle), std::cos(expectedRotationAngle), 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); expectedRotationAngle = 45.0 * M_PI / 180.0; to = Transform(); to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0); to.Blend(from, 0.5); EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle), -std::sin(expectedRotationAngle), 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(std::sin(expectedRotationAngle), std::cos(expectedRotationAngle), 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); to = Transform(); to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0); to.Blend(from, 1.0); EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to); } TEST(XFormTest, VerifyBlendForCompositeTransform) { // Verify that the.Blending was done with a decomposition in correct order // by blending a composite transform. Using matrix x vector notation // (Ax = b, where x is column vector), the ordering should be: // perspective * translation * rotation * skew * scale // // It is not as important (or meaningful) to check intermediate // interpolations; order of operations will be tested well enough by the // end cases that are easier to specify. Transform from; Transform to; Transform expectedEndOfAnimation; expectedEndOfAnimation.ApplyPerspectiveDepth(1.0); expectedEndOfAnimation.Translate3d(10.0, 20.0, 30.0); expectedEndOfAnimation.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 25.0); expectedEndOfAnimation.SkewY(45.0); expectedEndOfAnimation.Scale3d(6.0, 7.0, 8.0); to = expectedEndOfAnimation; to.Blend(from, 0.0); EXPECT_EQ(from, to); to = expectedEndOfAnimation; // We short circuit if blend is >= 1, so to check the numerics, we will // check that we get close to what we expect when we're nearly done // interpolating. to.Blend(from, .99999f); // Recomposing the matrix results in a normalized matrix, so to verify we // need to normalize the expectedEndOfAnimation before comparing elements. // Normalizing means dividing everything by expectedEndOfAnimation.m44(). Transform normalizedExpectedEndOfAnimation = expectedEndOfAnimation; Transform normalizationMatrix; normalizationMatrix.matrix().set( 0.0, 0.0, SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0))); normalizationMatrix.matrix().set( 1.0, 1.0, SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0))); normalizationMatrix.matrix().set( 2.0, 2.0, SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0))); normalizationMatrix.matrix().set( 3.0, 3.0, SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0))); normalizedExpectedEndOfAnimation.PreconcatTransform(normalizationMatrix); EXPECT_TRUE(MatricesAreNearlyEqual(normalizedExpectedEndOfAnimation, to)); } TEST(XFormTest, DecomposedTransformCtor) { DecomposedTransform decomp; for (int i = 0; i < 3; ++i) { EXPECT_EQ(0.0, decomp.translate[i]); EXPECT_EQ(1.0, decomp.scale[i]); EXPECT_EQ(0.0, decomp.skew[i]); EXPECT_EQ(0.0, decomp.quaternion[i]); EXPECT_EQ(0.0, decomp.perspective[i]); } EXPECT_EQ(1.0, decomp.quaternion[3]); EXPECT_EQ(1.0, decomp.perspective[3]); Transform identity; Transform composed = ComposeTransform(decomp); EXPECT_TRUE(MatricesAreNearlyEqual(identity, composed)); } TEST(XFormTest, FactorTRS) { for (int degrees = 0; degrees < 180; ++degrees) { // build a transformation matrix. gfx::Transform transform; transform.Translate(degrees * 2, -degrees * 3); transform.Rotate(degrees); transform.Scale(degrees + 1, 2 * degrees + 1); // factor the matrix DecomposedTransform decomp; bool success = DecomposeTransform(&decomp, transform); EXPECT_TRUE(success); EXPECT_FLOAT_EQ(decomp.translate[0], degrees * 2); EXPECT_FLOAT_EQ(decomp.translate[1], -degrees * 3); double rotation = std::acos(SkMScalarToDouble(decomp.quaternion[3])) * 360.0 / M_PI; while (rotation < 0.0) rotation += 360.0; while (rotation > 360.0) rotation -= 360.0; const float epsilon = 0.00015f; EXPECT_NEAR(rotation, degrees, epsilon); EXPECT_NEAR(decomp.scale[0], degrees + 1, epsilon); EXPECT_NEAR(decomp.scale[1], 2 * degrees + 1, epsilon); } } TEST(XFormTest, IntegerTranslation) { gfx::Transform transform; EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation()); transform.Translate3d(1, 2, 3); EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation()); transform.MakeIdentity(); transform.Translate3d(-1, -2, -3); EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation()); transform.MakeIdentity(); transform.Translate3d(4.5f, 0, 0); EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation()); transform.MakeIdentity(); transform.Translate3d(0, -6.7f, 0); EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation()); transform.MakeIdentity(); transform.Translate3d(0, 0, 8.9f); EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation()); } TEST(XFormTest, verifyMatrixInversion) { { // Invert a translation gfx::Transform translation; translation.Translate3d(2.0, 3.0, 4.0); EXPECT_TRUE(translation.IsInvertible()); gfx::Transform inverse_translation; bool is_invertible = translation.GetInverse(&inverse_translation); EXPECT_TRUE(is_invertible); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, -2.0f, inverse_translation); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, -3.0f, inverse_translation); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, -4.0f, inverse_translation); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_translation); } { // Invert a non-uniform scale gfx::Transform scale; scale.Scale3d(4.0, 10.0, 100.0); EXPECT_TRUE(scale.IsInvertible()); gfx::Transform inverse_scale; bool is_invertible = scale.GetInverse(&inverse_scale); EXPECT_TRUE(is_invertible); EXPECT_ROW1_EQ(0.25f, 0.0f, 0.0f, 0.0f, inverse_scale); EXPECT_ROW2_EQ(0.0f, 0.1f, 0.0f, 0.0f, inverse_scale); EXPECT_ROW3_EQ(0.0f, 0.0f, 0.01f, 0.0f, inverse_scale); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_scale); } { // Try to invert a matrix that is not invertible. // The inverse() function should reset the output matrix to identity. gfx::Transform uninvertible; uninvertible.matrix().set(0, 0, 0.f); uninvertible.matrix().set(1, 1, 0.f); uninvertible.matrix().set(2, 2, 0.f); uninvertible.matrix().set(3, 3, 0.f); EXPECT_FALSE(uninvertible.IsInvertible()); gfx::Transform inverse_of_uninvertible; // Add a scale just to more easily ensure that inverse_of_uninvertible is // reset to identity. inverse_of_uninvertible.Scale3d(4.0, 10.0, 100.0); bool is_invertible = uninvertible.GetInverse(&inverse_of_uninvertible); EXPECT_FALSE(is_invertible); EXPECT_TRUE(inverse_of_uninvertible.IsIdentity()); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, inverse_of_uninvertible); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, inverse_of_uninvertible); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, inverse_of_uninvertible); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_of_uninvertible); } } TEST(XFormTest, verifyBackfaceVisibilityBasicCases) { Transform transform; transform.MakeIdentity(); EXPECT_FALSE(transform.IsBackFaceVisible()); transform.MakeIdentity(); transform.RotateAboutYAxis(80.0); EXPECT_FALSE(transform.IsBackFaceVisible()); transform.MakeIdentity(); transform.RotateAboutYAxis(100.0); EXPECT_TRUE(transform.IsBackFaceVisible()); // Edge case, 90 degree rotation should return false. transform.MakeIdentity(); transform.RotateAboutYAxis(90.0); EXPECT_FALSE(transform.IsBackFaceVisible()); } TEST(XFormTest, verifyBackfaceVisibilityForPerspective) { Transform layer_space_to_projection_plane; // This tests if IsBackFaceVisible works properly under perspective // transforms. Specifically, layers that may have their back face visible in // orthographic projection, may not actually have back face visible under // perspective projection. // Case 1: Layer is rotated by slightly more than 90 degrees, at the center // of the prespective projection. In this case, the layer's back-side // is visible to the camera. layer_space_to_projection_plane.MakeIdentity(); layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0); layer_space_to_projection_plane.Translate3d(0.0, 0.0, 0.0); layer_space_to_projection_plane.RotateAboutYAxis(100.0); EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible()); // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted off // to the side of the camera. Because of the wide field-of-view, the // layer's front side is still visible. // // |<-- front side of layer is visible to camera // \ | / // \ | / // \| / // | / // |\ /<-- camera field of view // | \ / // back side of layer -->| \ / // \./ <-- camera origin // layer_space_to_projection_plane.MakeIdentity(); layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0); layer_space_to_projection_plane.Translate3d(-10.0, 0.0, 0.0); layer_space_to_projection_plane.RotateAboutYAxis(100.0); EXPECT_FALSE(layer_space_to_projection_plane.IsBackFaceVisible()); // Case 3: Additionally rotating the layer by 180 degrees should of course // show the opposite result of case 2. layer_space_to_projection_plane.RotateAboutYAxis(180.0); EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible()); } TEST(XFormTest, verifyDefaultConstructorCreatesIdentityMatrix) { Transform A; EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); EXPECT_TRUE(A.IsIdentity()); } TEST(XFormTest, verifyCopyConstructor) { Transform A; InitializeTestMatrix(&A); // Copy constructor should produce exact same elements as matrix A. Transform B(A); EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, B); EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, B); EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, B); EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, B); } TEST(XFormTest, verifyConstructorFor16Elements) { Transform transform(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0); EXPECT_ROW1_EQ(1.0f, 2.0f, 3.0f, 4.0f, transform); EXPECT_ROW2_EQ(5.0f, 6.0f, 7.0f, 8.0f, transform); EXPECT_ROW3_EQ(9.0f, 10.0f, 11.0f, 12.0f, transform); EXPECT_ROW4_EQ(13.0f, 14.0f, 15.0f, 16.0f, transform); } TEST(XFormTest, verifyConstructorFor2dElements) { Transform transform(1.0, 2.0, 3.0, 4.0, 5.0, 6.0); EXPECT_ROW1_EQ(1.0f, 2.0f, 0.0f, 5.0f, transform); EXPECT_ROW2_EQ(3.0f, 4.0f, 0.0f, 6.0f, transform); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, transform); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, transform); } TEST(XFormTest, verifyAssignmentOperator) { Transform A; InitializeTestMatrix(&A); Transform B; InitializeTestMatrix2(&B); Transform C; InitializeTestMatrix2(&C); C = B = A; // Both B and C should now have been re-assigned to the value of A. EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, B); EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, B); EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, B); EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, B); EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, C); EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, C); EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, C); EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, C); } TEST(XFormTest, verifyEqualsBooleanOperator) { Transform A; InitializeTestMatrix(&A); Transform B; InitializeTestMatrix(&B); EXPECT_TRUE(A == B); // Modifying multiple elements should cause equals operator to return false. Transform C; InitializeTestMatrix2(&C); EXPECT_FALSE(A == C); // Modifying any one individual element should cause equals operator to // return false. Transform D; D = A; D.matrix().set(0, 0, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(1, 0, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(2, 0, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(3, 0, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(0, 1, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(1, 1, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(2, 1, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(3, 1, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(0, 2, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(1, 2, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(2, 2, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(3, 2, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(0, 3, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(1, 3, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(2, 3, 0.f); EXPECT_FALSE(A == D); D = A; D.matrix().set(3, 3, 0.f); EXPECT_FALSE(A == D); } TEST(XFormTest, verifyMultiplyOperator) { Transform A; InitializeTestMatrix(&A); Transform B; InitializeTestMatrix2(&B); Transform C = A * B; EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, C); EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, C); EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, C); EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, C); // Just an additional sanity check; matrix multiplication is not commutative. EXPECT_FALSE(A * B == B * A); } TEST(XFormTest, verifyMultiplyAndAssignOperator) { Transform A; InitializeTestMatrix(&A); Transform B; InitializeTestMatrix2(&B); A *= B; EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A); EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A); EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A); EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A); // Just an additional sanity check; matrix multiplication is not commutative. Transform C = A; C *= B; Transform D = B; D *= A; EXPECT_FALSE(C == D); } TEST(XFormTest, verifyMatrixMultiplication) { Transform A; InitializeTestMatrix(&A); Transform B; InitializeTestMatrix2(&B); A.PreconcatTransform(B); EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A); EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A); EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A); EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A); } TEST(XFormTest, verifyMakeIdentiy) { Transform A; InitializeTestMatrix(&A); A.MakeIdentity(); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); EXPECT_TRUE(A.IsIdentity()); } TEST(XFormTest, verifyTranslate) { Transform A; A.Translate(2.0, 3.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 2.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 3.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that Translate() post-multiplies the existing matrix. A.MakeIdentity(); A.Scale(5.0, 5.0); A.Translate(2.0, 3.0); EXPECT_ROW1_EQ(5.0f, 0.0f, 0.0f, 10.0f, A); EXPECT_ROW2_EQ(0.0f, 5.0f, 0.0f, 15.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyTranslate3d) { Transform A; A.Translate3d(2.0, 3.0, 4.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 2.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 3.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 4.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that Translate3d() post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.Translate3d(2.0, 3.0, 4.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 12.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 21.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 32.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyScale) { Transform A; A.Scale(6.0, 7.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that Scale() post-multiplies the existing matrix. A.MakeIdentity(); A.Translate3d(2.0, 3.0, 4.0); A.Scale(6.0, 7.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 2.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 3.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 4.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyScale3d) { Transform A; A.Scale3d(6.0, 7.0, 8.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that scale3d() post-multiplies the existing matrix. A.MakeIdentity(); A.Translate3d(2.0, 3.0, 4.0); A.Scale3d(6.0, 7.0, 8.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 2.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 3.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 4.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotate) { Transform A; A.Rotate(90.0); EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that Rotate() post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.Rotate(90.0); EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutXAxis) { Transform A; double sin45 = 0.5 * sqrt(2.0); double cos45 = sin45; A.MakeIdentity(); A.RotateAboutXAxis(90.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); A.MakeIdentity(); A.RotateAboutXAxis(45.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_NEAR(0.0, cos45, -sin45, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, sin45, cos45, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that RotateAboutXAxis(angle) post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.RotateAboutXAxis(90.0); EXPECT_ROW1_NEAR(6.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 0.0, -7.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 8.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutYAxis) { Transform A; double sin45 = 0.5 * sqrt(2.0); double cos45 = sin45; // Note carefully, the expected pattern is inverted compared to rotating // about x axis or z axis. A.MakeIdentity(); A.RotateAboutYAxis(90.0); EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); A.MakeIdentity(); A.RotateAboutYAxis(45.0); EXPECT_ROW1_NEAR(cos45, 0.0, sin45, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_NEAR(-sin45, 0.0, cos45, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that RotateAboutYAxis(angle) post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.RotateAboutYAxis(90.0); EXPECT_ROW1_NEAR(0.0, 0.0, 6.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.0, 7.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-8.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutZAxis) { Transform A; double sin45 = 0.5 * sqrt(2.0); double cos45 = sin45; A.MakeIdentity(); A.RotateAboutZAxis(90.0); EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); A.MakeIdentity(); A.RotateAboutZAxis(45.0); EXPECT_ROW1_NEAR(cos45, -sin45, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(sin45, cos45, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that RotateAboutZAxis(angle) post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.RotateAboutZAxis(90.0); EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutForAlignedAxes) { Transform A; // Check rotation about z-axis A.MakeIdentity(); A.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0); EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Check rotation about x-axis A.MakeIdentity(); A.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Check rotation about y-axis. Note carefully, the expected pattern is // inverted compared to rotating about x axis or z axis. A.MakeIdentity(); A.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0); EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.RotateAboutZAxis(90.0); EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutForArbitraryAxis) { // Check rotation about an arbitrary non-axis-aligned vector. Transform A; A.RotateAbout(Vector3dF(1.0, 1.0, 1.0), 90.0); EXPECT_ROW1_NEAR(0.3333333333333334258519187, -0.2440169358562924717404030, 0.9106836025229592124219380, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.9106836025229592124219380, 0.3333333333333334258519187, -0.2440169358562924717404030, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-0.2440169358562924717404030, 0.9106836025229592124219380, 0.3333333333333334258519187, 0.0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyRotateAboutForDegenerateAxis) { // Check rotation about a degenerate zero vector. // It is expected to skip applying the rotation. Transform A; A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 45.0); // Verify that A remains unchanged. EXPECT_TRUE(A.IsIdentity()); InitializeTestMatrix(&A); A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 35.0); // Verify that A remains unchanged. EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, A); EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, A); EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, A); EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, A); } TEST(XFormTest, verifySkewX) { Transform A; A.SkewX(45.0); EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that skewX() post-multiplies the existing matrix. Row 1, column 2, // would incorrectly have value "7" if the matrix is pre-multiplied instead // of post-multiplied. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.SkewX(45.0); EXPECT_ROW1_EQ(6.0f, 6.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifySkewY) { Transform A; A.SkewY(45.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(1.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); // Verify that skewY() post-multiplies the existing matrix. Row 2, column 1 , // would incorrectly have value "6" if the matrix is pre-multiplied instead // of post-multiplied. A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); A.SkewY(45.0); EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(7.0f, 7.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A); } TEST(XFormTest, verifyPerspectiveDepth) { Transform A; A.ApplyPerspectiveDepth(1.0); EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, -1.0f, 1.0f, A); // Verify that PerspectiveDepth() post-multiplies the existing matrix. A.MakeIdentity(); A.Translate3d(2.0, 3.0, 4.0); A.ApplyPerspectiveDepth(1.0); EXPECT_ROW1_EQ(1.0f, 0.0f, -2.0f, 2.0f, A); EXPECT_ROW2_EQ(0.0f, 1.0f, -3.0f, 3.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, -3.0f, 4.0f, A); EXPECT_ROW4_EQ(0.0f, 0.0f, -1.0f, 1.0f, A); } TEST(XFormTest, verifyHasPerspective) { Transform A; A.ApplyPerspectiveDepth(1.0); EXPECT_TRUE(A.HasPerspective()); A.MakeIdentity(); A.ApplyPerspectiveDepth(0.0); EXPECT_FALSE(A.HasPerspective()); A.MakeIdentity(); A.matrix().set(3, 0, -1.f); EXPECT_TRUE(A.HasPerspective()); A.MakeIdentity(); A.matrix().set(3, 1, -1.f); EXPECT_TRUE(A.HasPerspective()); A.MakeIdentity(); A.matrix().set(3, 2, -0.3f); EXPECT_TRUE(A.HasPerspective()); A.MakeIdentity(); A.matrix().set(3, 3, 0.5f); EXPECT_TRUE(A.HasPerspective()); A.MakeIdentity(); A.matrix().set(3, 3, 0.f); EXPECT_TRUE(A.HasPerspective()); } TEST(XFormTest, verifyIsInvertible) { Transform A; // Translations, rotations, scales, skews and arbitrary combinations of them // are invertible. A.MakeIdentity(); EXPECT_TRUE(A.IsInvertible()); A.MakeIdentity(); A.Translate3d(2.0, 3.0, 4.0); EXPECT_TRUE(A.IsInvertible()); A.MakeIdentity(); A.Scale3d(6.0, 7.0, 8.0); EXPECT_TRUE(A.IsInvertible()); A.MakeIdentity(); A.RotateAboutXAxis(10.0); A.RotateAboutYAxis(20.0); A.RotateAboutZAxis(30.0); EXPECT_TRUE(A.IsInvertible()); A.MakeIdentity(); A.SkewX(45.0); EXPECT_TRUE(A.IsInvertible()); // A perspective matrix (projection plane at z=0) is invertible. The // intuitive explanation is that perspective is eqivalent to a skew of the // w-axis; skews are invertible. A.MakeIdentity(); A.ApplyPerspectiveDepth(1.0); EXPECT_TRUE(A.IsInvertible()); // A "pure" perspective matrix derived by similar triangles, with m44() set // to zero (i.e. camera positioned at the origin), is not invertible. A.MakeIdentity(); A.ApplyPerspectiveDepth(1.0); A.matrix().set(3, 3, 0.f); EXPECT_FALSE(A.IsInvertible()); // Adding more to a non-invertible matrix will not make it invertible in the // general case. A.MakeIdentity(); A.ApplyPerspectiveDepth(1.0); A.matrix().set(3, 3, 0.f); A.Scale3d(6.0, 7.0, 8.0); A.RotateAboutXAxis(10.0); A.RotateAboutYAxis(20.0); A.RotateAboutZAxis(30.0); A.Translate3d(6.0, 7.0, 8.0); EXPECT_FALSE(A.IsInvertible()); // A degenerate matrix of all zeros is not invertible. A.MakeIdentity(); A.matrix().set(0, 0, 0.f); A.matrix().set(1, 1, 0.f); A.matrix().set(2, 2, 0.f); A.matrix().set(3, 3, 0.f); EXPECT_FALSE(A.IsInvertible()); } TEST(XFormTest, verifyIsIdentity) { Transform A; InitializeTestMatrix(&A); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); EXPECT_TRUE(A.IsIdentity()); // Modifying any one individual element should cause the matrix to no longer // be identity. A.MakeIdentity(); A.matrix().set(0, 0, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(1, 0, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(2, 0, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(3, 0, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(0, 1, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(1, 1, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(2, 1, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(3, 1, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(0, 2, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(1, 2, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(2, 2, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(3, 2, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(0, 3, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(1, 3, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(2, 3, 2.f); EXPECT_FALSE(A.IsIdentity()); A.MakeIdentity(); A.matrix().set(3, 3, 2.f); EXPECT_FALSE(A.IsIdentity()); } TEST(XFormTest, verifyIsIdentityOrTranslation) { Transform A; InitializeTestMatrix(&A); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); EXPECT_TRUE(A.IsIdentityOrTranslation()); // Modifying any non-translation components should cause // IsIdentityOrTranslation() to return false. NOTE: (0, 3), (1, 3), and // (2, 3) are the translation components, so modifying them should still // return true. A.MakeIdentity(); A.matrix().set(0, 0, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(1, 0, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(2, 0, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 0, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(0, 1, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(1, 1, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(2, 1, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 1, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(0, 2, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(1, 2, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(2, 2, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 2, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(0, 3, 2.f); EXPECT_TRUE(A.IsIdentityOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(1, 3, 2.f); EXPECT_TRUE(A.IsIdentityOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(2, 3, 2.f); EXPECT_TRUE(A.IsIdentityOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 3, 2.f); EXPECT_FALSE(A.IsIdentityOrTranslation()); } TEST(XFormTest, verifyIsApproximatelyIdentityOrTranslation) { Transform A; SkMatrix44& matrix = A.matrix(); // Exact pure translation. A.MakeIdentity(); // Set translate values to values other than 0 or 1. matrix.set(0, 3, 3.4f); matrix.set(1, 3, 4.4f); matrix.set(2, 3, 5.6f); EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(0)); EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(kApproxZero)); // Approximately pure translation. InitializeApproxIdentityMatrix(&A); // Some values must be exact. matrix.set(3, 0, 0); matrix.set(3, 1, 0); matrix.set(3, 2, 0); matrix.set(3, 3, 1); // Set translate values to values other than 0 or 1. matrix.set(0, 3, 3.4f); matrix.set(1, 3, 4.4f); matrix.set(2, 3, 5.6f); EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(0)); EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(kApproxZero)); // Not approximately pure translation. InitializeApproxIdentityMatrix(&A); // Some values must be exact. matrix.set(3, 0, 0); matrix.set(3, 1, 0); matrix.set(3, 2, 0); matrix.set(3, 3, 1); // Set some values (not translate values) to values other than 0 or 1. matrix.set(0, 1, 3.4f); matrix.set(3, 2, 4.4f); matrix.set(2, 0, 5.6f); EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(0)); EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(kApproxZero)); } TEST(XFormTest, verifyIsScaleOrTranslation) { Transform A; InitializeTestMatrix(&A); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); EXPECT_TRUE(A.IsScaleOrTranslation()); // Modifying any non-scale or non-translation components should cause // IsScaleOrTranslation() to return false. (0, 0), (1, 1), (2, 2), (0, 3), // (1, 3), and (2, 3) are the scale and translation components, so // modifying them should still return true. // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(0, 0, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(1, 0, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(2, 0, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 0, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(0, 1, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(1, 1, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(2, 1, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 1, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(0, 2, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(1, 2, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(2, 2, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 2, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(0, 3, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(1, 3, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); // Note carefully - expecting true here. A.MakeIdentity(); A.matrix().set(2, 3, 2.f); EXPECT_TRUE(A.IsScaleOrTranslation()); A.MakeIdentity(); A.matrix().set(3, 3, 2.f); EXPECT_FALSE(A.IsScaleOrTranslation()); } TEST(XFormTest, verifyFlattenTo2d) { Transform A; InitializeTestMatrix(&A); A.FlattenTo2d(); EXPECT_ROW1_EQ(10.0f, 14.0f, 0.0f, 22.0f, A); EXPECT_ROW2_EQ(11.0f, 15.0f, 0.0f, 23.0f, A); EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A); EXPECT_ROW4_EQ(13.0f, 17.0f, 0.0f, 25.0f, A); } // Another implementation of Preserves2dAxisAlignment that isn't as fast, // good for testing the faster implementation. static bool EmpiricallyPreserves2dAxisAlignment(const Transform& transform) { Point3F p1(5.0f, 5.0f, 0.0f); Point3F p2(10.0f, 5.0f, 0.0f); Point3F p3(10.0f, 20.0f, 0.0f); Point3F p4(5.0f, 20.0f, 0.0f); QuadF test_quad(PointF(p1.x(), p1.y()), PointF(p2.x(), p2.y()), PointF(p3.x(), p3.y()), PointF(p4.x(), p4.y())); EXPECT_TRUE(test_quad.IsRectilinear()); transform.TransformPoint(&p1); transform.TransformPoint(&p2); transform.TransformPoint(&p3); transform.TransformPoint(&p4); QuadF transformedQuad(PointF(p1.x(), p1.y()), PointF(p2.x(), p2.y()), PointF(p3.x(), p3.y()), PointF(p4.x(), p4.y())); return transformedQuad.IsRectilinear(); } TEST(XFormTest, Preserves2dAxisAlignment) { static const struct TestCase { SkMScalar a; // row 1, column 1 SkMScalar b; // row 1, column 2 SkMScalar c; // row 2, column 1 SkMScalar d; // row 2, column 2 bool expected; } test_cases[] = { { 3.f, 0.f, 0.f, 4.f, true }, // basic case { 0.f, 4.f, 3.f, 0.f, true }, // rotate by 90 { 0.f, 0.f, 0.f, 4.f, true }, // degenerate x { 3.f, 0.f, 0.f, 0.f, true }, // degenerate y { 0.f, 0.f, 3.f, 0.f, true }, // degenerate x + rotate by 90 { 0.f, 4.f, 0.f, 0.f, true }, // degenerate y + rotate by 90 { 3.f, 4.f, 0.f, 0.f, false }, { 0.f, 0.f, 3.f, 4.f, false }, { 0.f, 3.f, 0.f, 4.f, false }, { 3.f, 0.f, 4.f, 0.f, false }, { 3.f, 4.f, 5.f, 0.f, false }, { 3.f, 4.f, 0.f, 5.f, false }, { 3.f, 0.f, 4.f, 5.f, false }, { 0.f, 3.f, 4.f, 5.f, false }, { 2.f, 3.f, 4.f, 5.f, false }, }; Transform transform; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; transform.MakeIdentity(); transform.matrix().set(0, 0, value.a); transform.matrix().set(0, 1, value.b); transform.matrix().set(1, 0, value.c); transform.matrix().set(1, 1, value.d); if (value.expected) { EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); } else { EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_FALSE(transform.Preserves2dAxisAlignment()); } } // Try the same test cases again, but this time make sure that other matrix // elements (except perspective) have entries, to test that they are ignored. for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; transform.MakeIdentity(); transform.matrix().set(0, 0, value.a); transform.matrix().set(0, 1, value.b); transform.matrix().set(1, 0, value.c); transform.matrix().set(1, 1, value.d); transform.matrix().set(0, 2, 1.f); transform.matrix().set(0, 3, 2.f); transform.matrix().set(1, 2, 3.f); transform.matrix().set(1, 3, 4.f); transform.matrix().set(2, 0, 5.f); transform.matrix().set(2, 1, 6.f); transform.matrix().set(2, 2, 7.f); transform.matrix().set(2, 3, 8.f); if (value.expected) { EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); } else { EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_FALSE(transform.Preserves2dAxisAlignment()); } } // Try the same test cases again, but this time add perspective which is // always assumed to not-preserve axis alignment. for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) { const TestCase& value = test_cases[i]; transform.MakeIdentity(); transform.matrix().set(0, 0, value.a); transform.matrix().set(0, 1, value.b); transform.matrix().set(1, 0, value.c); transform.matrix().set(1, 1, value.d); transform.matrix().set(0, 2, 1.f); transform.matrix().set(0, 3, 2.f); transform.matrix().set(1, 2, 3.f); transform.matrix().set(1, 3, 4.f); transform.matrix().set(2, 0, 5.f); transform.matrix().set(2, 1, 6.f); transform.matrix().set(2, 2, 7.f); transform.matrix().set(2, 3, 8.f); transform.matrix().set(3, 0, 9.f); transform.matrix().set(3, 1, 10.f); transform.matrix().set(3, 2, 11.f); transform.matrix().set(3, 3, 12.f); EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_FALSE(transform.Preserves2dAxisAlignment()); } // Try a few more practical situations to check precision transform.MakeIdentity(); transform.RotateAboutZAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutZAxis(180.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutZAxis(270.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutYAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutXAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutZAxis(90.0); transform.RotateAboutYAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutZAxis(90.0); transform.RotateAboutXAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutYAxis(90.0); transform.RotateAboutZAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutZAxis(45.0); EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_FALSE(transform.Preserves2dAxisAlignment()); // 3-d case; In 2d after an orthographic projection, this case does // preserve 2d axis alignment. But in 3d, it does not preserve axis // alignment. transform.MakeIdentity(); transform.RotateAboutYAxis(45.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.RotateAboutXAxis(45.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); // Perspective cases. transform.MakeIdentity(); transform.ApplyPerspectiveDepth(10.0); transform.RotateAboutYAxis(45.0); EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_FALSE(transform.Preserves2dAxisAlignment()); transform.MakeIdentity(); transform.ApplyPerspectiveDepth(10.0); transform.RotateAboutZAxis(90.0); EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform)); EXPECT_TRUE(transform.Preserves2dAxisAlignment()); } TEST(XFormTest, To2dTranslation) { Vector2dF translation(3.f, 7.f); Transform transform; transform.Translate(translation.x(), translation.y() + 1); EXPECT_NE(translation.ToString(), transform.To2dTranslation().ToString()); transform.MakeIdentity(); transform.Translate(translation.x(), translation.y()); EXPECT_EQ(translation.ToString(), transform.To2dTranslation().ToString()); } TEST(XFormTest, TransformRect) { Transform translation; translation.Translate(3.f, 7.f); RectF rect(1.f, 2.f, 3.f, 4.f); RectF expected(4.f, 9.f, 3.f, 4.f); translation.TransformRect(&rect); EXPECT_EQ(expected.ToString(), rect.ToString()); } TEST(XFormTest, TransformRectReverse) { Transform translation; translation.Translate(3.f, 7.f); RectF rect(1.f, 2.f, 3.f, 4.f); RectF expected(-2.f, -5.f, 3.f, 4.f); EXPECT_TRUE(translation.TransformRectReverse(&rect)); EXPECT_EQ(expected.ToString(), rect.ToString()); Transform singular; singular.Scale3d(0.f, 0.f, 0.f); EXPECT_FALSE(singular.TransformRectReverse(&rect)); } TEST(XFormTest, TransformBox) { Transform translation; translation.Translate3d(3.f, 7.f, 6.f); BoxF box(1.f, 2.f, 3.f, 4.f, 5.f, 6.f); BoxF expected(4.f, 9.f, 9.f, 4.f, 5.f, 6.f); translation.TransformBox(&box); EXPECT_EQ(expected.ToString(), box.ToString()); } TEST(XFormTest, TransformBoxReverse) { Transform translation; translation.Translate3d(3.f, 7.f, 6.f); BoxF box(1.f, 2.f, 3.f, 4.f, 5.f, 6.f); BoxF expected(-2.f, -5.f, -3.f, 4.f, 5.f, 6.f); EXPECT_TRUE(translation.TransformBoxReverse(&box)); EXPECT_EQ(expected.ToString(), box.ToString()); Transform singular; singular.Scale3d(0.f, 0.f, 0.f); EXPECT_FALSE(singular.TransformBoxReverse(&box)); } } // namespace } // namespace gfx