// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/gfx/transform_util.h" #include #include "ui/gfx/point.h" namespace gfx { namespace { double Length3(double v[3]) { return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); } void Scale3(double v[3], double scale) { for (int i = 0; i < 3; ++i) v[i] *= scale; } template double Dot(const double* a, const double* b) { double toReturn = 0; for (int i = 0; i < n; ++i) toReturn += a[i] * b[i]; return toReturn; } template void Combine(double* out, const double* a, const double* b, double scale_a, double scale_b) { for (int i = 0; i < n; ++i) out[i] = a[i] * scale_a + b[i] * scale_b; } void Cross3(double out[3], double a[3], double b[3]) { double x = a[1] * b[2] - a[2] * b[1]; double y = a[2] * b[0] - a[0] * b[2]; double z = a[0] * b[1] - a[1] * b[0]; out[0] = x; out[1] = y; out[2] = z; } // Taken from http://www.w3.org/TR/css3-transforms/. bool Slerp(double out[4], const double q1[4], const double q2[4], double progress) { double product = Dot<4>(q1, q2); // Clamp product to -1.0 <= product <= 1.0. product = std::min(std::max(product, -1.0), 1.0); const double epsilon = 1e-5; if (std::abs(product - 1.0) < epsilon) { for (int i = 0; i < 4; ++i) out[i] = q1[i]; return true; } if (std::abs(product) < epsilon) { // Rotation by 180 degrees. We'll fail. It's ambiguous how to interpolate. return false; } double denom = std::sqrt(1 - product * product); double theta = std::acos(product); double w = std::sin(progress * theta) * (1 / denom); double scale1 = std::cos(progress * theta) - product * w; double scale2 = w; Combine<4>(out, q1, q2, scale1, scale2); return true; } // Returns false if the matrix cannot be normalized. bool Normalize(SkMatrix44& m) { if (m.getDouble(3, 3) == 0.0) // Cannot normalize. return false; double scale = 1.0 / m.getDouble(3, 3); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.setDouble(i, j, m.getDouble(i, j) * scale); return true; } } // namespace Transform GetScaleTransform(const Point& anchor, float scale) { Transform transform; transform.ConcatScale(scale, scale); transform.ConcatTranslate(anchor.x() * (1 - scale), anchor.y() * (1 - scale)); return transform; } DecomposedTransform::DecomposedTransform() { translate[0] = translate[1] = translate[2] = 0.0; scale[0] = scale[1] = scale[2] = 1.0; skew[0] = skew[1] = skew[2] = 0.0; perspective[0] = perspective[1] = perspective[2] = 0.0; quaternion[0] = quaternion[1] = quaternion[2] = 0.0; perspective[3] = quaternion[3] = 1.0; } bool BlendDecomposedTransforms(DecomposedTransform* out, const DecomposedTransform& to, const DecomposedTransform& from, double progress) { double scalea = progress; double scaleb = 1.0 - progress; Combine<3>(out->translate, to.translate, from.translate, scalea, scaleb); Combine<3>(out->scale, to.scale, from.scale, scalea, scaleb); Combine<3>(out->skew, to.skew, from.skew, scalea, scaleb); Combine<4>( out->perspective, to.perspective, from.perspective, scalea, scaleb); return Slerp(out->quaternion, from.quaternion, to.quaternion, progress); } // Taken from http://www.w3.org/TR/css3-transforms/. bool DecomposeTransform(DecomposedTransform* decomp, const Transform& transform) { if (!decomp) return false; // We'll operate on a copy of the matrix. SkMatrix44 matrix = transform.matrix(); // If we cannot normalize the matrix, then bail early as we cannot decompose. if (!Normalize(matrix)) return false; SkMatrix44 perspectiveMatrix = matrix; for (int i = 0; i < 3; ++i) perspectiveMatrix.setDouble(3, i, 0.0); perspectiveMatrix.setDouble(3, 3, 1.0); // If the perspective matrix is not invertible, we are also unable to // decompose, so we'll bail early. Constant taken from SkMatrix44::invert. if (std::abs(perspectiveMatrix.determinant()) < 1e-8) return false; if (matrix.getDouble(3, 0) != 0.0 || matrix.getDouble(3, 1) != 0.0 || matrix.getDouble(3, 2) != 0.0) { // rhs is the right hand side of the equation. SkMScalar rhs[4] = { matrix.get(3, 0), matrix.get(3, 1), matrix.get(3, 2), matrix.get(3, 3) }; // Solve the equation by inverting perspectiveMatrix and multiplying // rhs by the inverse. SkMatrix44 inversePerspectiveMatrix; if (!perspectiveMatrix.invert(&inversePerspectiveMatrix)) return false; SkMatrix44 transposedInversePerspectiveMatrix = inversePerspectiveMatrix; transposedInversePerspectiveMatrix.transpose(); transposedInversePerspectiveMatrix.mapMScalars(rhs); for (int i = 0; i < 4; ++i) decomp->perspective[i] = rhs[i]; } else { // No perspective. for (int i = 0; i < 3; ++i) decomp->perspective[i] = 0.0; decomp->perspective[3] = 1.0; } for (int i = 0; i < 3; i++) decomp->translate[i] = matrix.getDouble(i, 3); double row[3][3]; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; ++j) row[i][j] = matrix.getDouble(j, i); // Compute X scale factor and normalize first row. decomp->scale[0] = Length3(row[0]); if (decomp->scale[0] != 0.0) Scale3(row[0], 1.0 / decomp->scale[0]); // Compute XY shear factor and make 2nd row orthogonal to 1st. decomp->skew[0] = Dot<3>(row[0], row[1]); Combine<3>(row[1], row[1], row[0], 1.0, -decomp->skew[0]); // Now, compute Y scale and normalize 2nd row. decomp->scale[1] = Length3(row[1]); if (decomp->scale[1] != 0.0) Scale3(row[1], 1.0 / decomp->scale[1]); decomp->skew[0] /= decomp->scale[1]; // Compute XZ and YZ shears, orthogonalize 3rd row decomp->skew[1] = Dot<3>(row[0], row[2]); Combine<3>(row[2], row[2], row[0], 1.0, -decomp->skew[1]); decomp->skew[2] = Dot<3>(row[1], row[2]); Combine<3>(row[2], row[2], row[1], 1.0, -decomp->skew[2]); // Next, get Z scale and normalize 3rd row. decomp->scale[2] = Length3(row[2]); if (decomp->scale[2] != 0.0) Scale3(row[2], 1.0 / decomp->scale[2]); decomp->skew[1] /= decomp->scale[2]; decomp->skew[2] /= decomp->scale[2]; // At this point, the matrix (in rows) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. double pdum3[3]; Cross3(pdum3, row[1], row[2]); if (Dot<3>(row[0], pdum3) < 0) { for (int i = 0; i < 3; i++) { decomp->scale[i] *= -1.0; for (int j = 0; j < 3; ++j) row[i][j] *= -1.0; } } decomp->quaternion[0] = 0.5 * std::sqrt(std::max(1.0 + row[0][0] - row[1][1] - row[2][2], 0.0)); decomp->quaternion[1] = 0.5 * std::sqrt(std::max(1.0 - row[0][0] + row[1][1] - row[2][2], 0.0)); decomp->quaternion[2] = 0.5 * std::sqrt(std::max(1.0 - row[0][0] - row[1][1] + row[2][2], 0.0)); decomp->quaternion[3] = 0.5 * std::sqrt(std::max(1.0 + row[0][0] + row[1][1] + row[2][2], 0.0)); if (row[2][1] > row[1][2]) decomp->quaternion[0] = -decomp->quaternion[0]; if (row[0][2] > row[2][0]) decomp->quaternion[1] = -decomp->quaternion[1]; if (row[1][0] > row[0][1]) decomp->quaternion[2] = -decomp->quaternion[2]; return true; } // Taken from http://www.w3.org/TR/css3-transforms/. Transform ComposeTransform(const DecomposedTransform& decomp) { SkMatrix44 matrix; for (int i = 0; i < 4; i++) matrix.setDouble(3, i, decomp.perspective[i]); SkMatrix44 tempTranslation; tempTranslation.setTranslate(SkDoubleToMScalar(decomp.translate[0]), SkDoubleToMScalar(decomp.translate[1]), SkDoubleToMScalar(decomp.translate[2])); matrix.preConcat(tempTranslation); double x = decomp.quaternion[0]; double y = decomp.quaternion[1]; double z = decomp.quaternion[2]; double w = decomp.quaternion[3]; SkMatrix44 rotation_matrix; rotation_matrix.setDouble(0, 0, 1.0 - 2.0 * (y * y + z * z)); rotation_matrix.setDouble(0, 1, 2.0 * (x * y - z * w)); rotation_matrix.setDouble(0, 2, 2.0 * (x * z + y * w)); rotation_matrix.setDouble(1, 0, 2.0 * (x * y + z * w)); rotation_matrix.setDouble(1, 1, 1.0 - 2.0 * (x * x + z * z)); rotation_matrix.setDouble(1, 2, 2.0 * (y * z - x * w)); rotation_matrix.setDouble(2, 0, 2.0 * (x * z - y * w)); rotation_matrix.setDouble(2, 1, 2.0 * (y * z + x * w)); rotation_matrix.setDouble(2, 2, 1.0 - 2.0 * (x * x + y * y)); matrix.preConcat(rotation_matrix); SkMatrix44 temp; if (decomp.skew[2]) { temp.setDouble(1, 2, decomp.skew[2]); matrix.preConcat(temp); } if (decomp.skew[1]) { temp.setDouble(1, 2, 0); temp.setDouble(0, 2, decomp.skew[1]); matrix.preConcat(temp); } if (decomp.skew[0]) { temp.setDouble(0, 2, 0); temp.setDouble(0, 1, decomp.skew[0]); matrix.preConcat(temp); } SkMatrix44 tempScale; tempScale.setScale(SkDoubleToMScalar(decomp.scale[0]), SkDoubleToMScalar(decomp.scale[1]), SkDoubleToMScalar(decomp.scale[2])); matrix.preConcat(tempScale); Transform to_return; to_return.matrix() = matrix; return to_return; } } // namespace ui