// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <d3d9.h> #include <random> #include "base/basictypes.h" #include "base/file_util.h" #include "base/hash.h" #include "base/scoped_native_library.h" #include "base/stringprintf.h" #include "base/time.h" #include "base/win/scoped_comptr.h" #include "base/win/windows_version.h" #include "media/base/simd/convert_rgb_to_yuv.h" #include "media/base/yuv_convert.h" #include "skia/ext/image_operations.h" #include "testing/gtest/include/gtest/gtest-param-test.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColor.h" #include "ui/gfx/codec/png_codec.h" #include "ui/gfx/rect.h" #include "ui/surface/accelerated_surface_transformer_win.h" #include "ui/surface/accelerated_surface_win.h" #include "ui/surface/d3d9_utils_win.h" namespace d3d_utils = ui_surface_d3d9_utils; using base::win::ScopedComPtr; using std::uniform_int_distribution; namespace { // Debug flag, useful when hacking on tests. const bool kDumpImagesOnFailure = false; SkBitmap ToSkBitmap(IDirect3DSurface9* surface, bool is_single_channel) { D3DLOCKED_RECT locked_rect; EXPECT_HRESULT_SUCCEEDED( surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY)); SkBitmap result; gfx::Size size = d3d_utils::GetSize(surface); if (is_single_channel) size = gfx::Size(size.width() * 4, size.height()); result.setConfig(SkBitmap::kARGB_8888_Config, size.width(), size.height()); result.setIsOpaque(true); result.allocPixels(); result.lockPixels(); for (int y = 0; y < size.height(); ++y) { uint8* row8 = reinterpret_cast<uint8*>(locked_rect.pBits) + (y * locked_rect.Pitch); if (is_single_channel) { for (int x = 0; x < size.width(); ++x) { *result.getAddr32(x, y) = SkColorSetRGB(row8[x], row8[x], row8[x]); } } else { uint32* row32 = reinterpret_cast<uint32*>(row8); for (int x = 0; x < size.width(); ++x) { *result.getAddr32(x, y) = row32[x] | 0xFF000000; } } } result.unlockPixels(); result.setImmutable(); surface->UnlockRect(); return result; } bool WritePNGFile(const SkBitmap& bitmap, const base::FilePath& file_path) { std::vector<unsigned char> png_data; const bool discard_transparency = true; if (gfx::PNGCodec::EncodeBGRASkBitmap(bitmap, discard_transparency, &png_data) && file_util::CreateDirectory(file_path.DirName())) { char* data = reinterpret_cast<char*>(&png_data[0]); int size = static_cast<int>(png_data.size()); return file_util::WriteFile(file_path, data, size) == size; } return false; } } // namespace // Test fixture for AcceleratedSurfaceTransformer. // // This class is parameterized so that it runs only on Vista+. See // WindowsVersionIfVistaOrBetter() for details on this works. class AcceleratedSurfaceTransformerTest : public testing::TestWithParam<int> { public: AcceleratedSurfaceTransformerTest() : color_error_tolerance_(0) {}; IDirect3DDevice9Ex* device() { return device_.get(); } virtual void SetUp() { if (!d3d_module_.is_valid()) { if (!d3d_utils::LoadD3D9(&d3d_module_)) { GTEST_FAIL() << "Could not load d3d9.dll"; return; } } if (!d3d_utils::CreateDevice(d3d_module_, D3DDEVTYPE_HAL, D3DPRESENT_INTERVAL_IMMEDIATE, device_.Receive())) { GTEST_FAIL() << "Could not create Direct3D device."; return; } SeedRandom("default"); } virtual void TearDown() { device_ = NULL; } // Gets a human-readable identifier of the graphics hardware being used, // intended for use inside of SCOPED_TRACE(). std::string GetAdapterInfo() { ScopedComPtr<IDirect3D9> d3d; EXPECT_HRESULT_SUCCEEDED(device()->GetDirect3D(d3d.Receive())); D3DADAPTER_IDENTIFIER9 info; EXPECT_HRESULT_SUCCEEDED(d3d->GetAdapterIdentifier(0, 0, &info)); return StringPrintf("Running on graphics hardware: %s", info.Description); } void SeedRandom(const char* seed) { rng_.seed(base::Hash(seed)); random_dword_.reset(); } // Driver workaround: on an Intel GPU (Mobile Intel 965 Express), it seems // necessary to flush between drawing and locking, for the synchronization // to behave properly. void BeforeLockWorkaround() { EXPECT_HRESULT_SUCCEEDED( device()->Present(0, 0, 0, 0)); } void WarnOnMissingFeatures(AcceleratedSurfaceTransformer* gpu_ops) { // Prints a single warning line if some tests are feature-dependent // and the feature is not supported by the current GPU. if (!gpu_ops->device_supports_multiple_render_targets()) { LOG(WARNING) << "MRT not supported, some tests will be skipped. " << GetAdapterInfo(); } } // Locks and fills a surface with a checkerboard pattern where the colors // are random but the total image pattern is horizontally and vertically // symmetric. void FillSymmetricRandomCheckerboard( IDirect3DSurface9* lockable_surface, const gfx::Size& size, int checker_square_size) { D3DLOCKED_RECT locked_rect; ASSERT_HRESULT_SUCCEEDED( lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD)); DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits); ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD)); int pitch = locked_rect.Pitch / sizeof(DWORD); for (int y = 0; y < (size.height() + 1) / 2; y += checker_square_size) { for (int x = 0; x < (size.width() + 1) / 2; x += checker_square_size) { DWORD color = RandomColor(); int y_limit = std::min(size.height() / 2, y + checker_square_size - 1); int x_limit = std::min(size.width() / 2, x + checker_square_size - 1); for (int y_lo = y; y_lo <= y_limit; y_lo++) { for (int x_lo = x; x_lo <= x_limit; x_lo++) { int y_hi = size.height() - 1 - y_lo; int x_hi = size.width() - 1 - x_lo; surface[x_lo + y_lo*pitch] = color; surface[x_lo + y_hi*pitch] = color; surface[x_hi + y_lo*pitch] = color; surface[x_hi + y_hi*pitch] = color; } } } } lockable_surface->UnlockRect(); } void FillRandomCheckerboard( IDirect3DSurface9* lockable_surface, const gfx::Size& size, int checker_square_size) { D3DLOCKED_RECT locked_rect; ASSERT_HRESULT_SUCCEEDED( lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_DISCARD)); DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits); ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD)); int pitch = locked_rect.Pitch / sizeof(DWORD); for (int y = 0; y <= size.height(); y += checker_square_size) { for (int x = 0; x <= size.width(); x += checker_square_size) { DWORD color = RandomColor(); int y_limit = std::min(size.height(), y + checker_square_size); int x_limit = std::min(size.width(), x + checker_square_size); for (int square_y = y; square_y < y_limit; square_y++) { for (int square_x = x; square_x < x_limit; square_x++) { surface[square_x + square_y*pitch] = color; } } } } lockable_surface->UnlockRect(); } // Approximate color-equality check. Allows for some rounding error. bool AssertSameColor(DWORD color_a, DWORD color_b) { if (color_a == color_b) return true; uint8* a = reinterpret_cast<uint8*>(&color_a); uint8* b = reinterpret_cast<uint8*>(&color_b); int max_error = 0; for (int i = 0; i < 4; i++) max_error = std::max(max_error, std::abs(static_cast<int>(a[i]) - b[i])); if (max_error <= color_error_tolerance()) return true; std::string expected_color = StringPrintf("%3d, %3d, %3d, %3d", a[0], a[1], a[2], a[3]); std::string actual_color = StringPrintf("%3d, %3d, %3d, %3d", b[0], b[1], b[2], b[3]); EXPECT_EQ(expected_color, actual_color) << "Componentwise color difference was " << max_error << "; max allowed is " << color_error_tolerance(); return false; } bool AssertSameColor(uint8 color_a, uint8 color_b) { if (color_a == color_b) return true; int max_error = std::abs((int) color_a - (int) color_b); if (max_error <= color_error_tolerance()) return true; ADD_FAILURE() << "Colors not equal: " << StringPrintf("0x%x", color_a) << " vs. " << StringPrintf("0x%x", color_b); return false; } // Asserts that an image is symmetric with respect to itself: both // horizontally and vertically, within the tolerance of AssertSameColor. void AssertSymmetry(IDirect3DSurface9* lockable_surface, const gfx::Size& size) { BeforeLockWorkaround(); D3DLOCKED_RECT locked_rect; ASSERT_HRESULT_SUCCEEDED( lockable_surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY)); ASSERT_EQ(0, locked_rect.Pitch % sizeof(DWORD)); int pitch = locked_rect.Pitch / sizeof(DWORD); DWORD* surface = reinterpret_cast<DWORD*>(locked_rect.pBits); for (int y_lo = 0; y_lo < size.height() / 2; y_lo++) { int y_hi = size.height() - 1 - y_lo; for (int x_lo = 0; x_lo < size.width() / 2; x_lo++) { int x_hi = size.width() - 1 - x_lo; if (!AssertSameColor(surface[x_lo + y_lo*pitch], surface[x_hi + y_lo*pitch])) { lockable_surface->UnlockRect(); GTEST_FAIL() << "Pixels (" << x_lo << ", " << y_lo << ") vs. " << "(" << x_hi << ", " << y_lo << ")"; } if (!AssertSameColor(surface[x_hi + y_lo*pitch], surface[x_hi + y_hi*pitch])) { lockable_surface->UnlockRect(); GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_lo << ") vs. " << "(" << x_hi << ", " << y_hi << ")"; } if (!AssertSameColor(surface[x_hi + y_hi*pitch], surface[x_lo + y_hi*pitch])) { lockable_surface->UnlockRect(); GTEST_FAIL() << "Pixels (" << x_hi << ", " << y_hi << ") vs. " << "(" << x_lo << ", " << y_hi << ")"; } } } lockable_surface->UnlockRect(); } // Asserts that the actual image is a bit-identical, vertically mirrored // copy of the expected image. void AssertIsInvertedCopy(const gfx::Size& size, IDirect3DSurface9* expected, IDirect3DSurface9* actual) { BeforeLockWorkaround(); D3DLOCKED_RECT locked_expected, locked_actual; ASSERT_HRESULT_SUCCEEDED( expected->LockRect(&locked_expected, NULL, D3DLOCK_READONLY)); ASSERT_HRESULT_SUCCEEDED( actual->LockRect(&locked_actual, NULL, D3DLOCK_READONLY)); ASSERT_EQ(0, locked_expected.Pitch % sizeof(DWORD)); int pitch = locked_expected.Pitch / sizeof(DWORD); DWORD* expected_image = reinterpret_cast<DWORD*>(locked_expected.pBits); DWORD* actual_image = reinterpret_cast<DWORD*>(locked_actual.pBits); for (int y = 0; y < size.height(); y++) { int y_actual = size.height() - 1 - y; for (int x = 0; x < size.width(); ++x) if (!AssertSameColor(expected_image[y*pitch + x], actual_image[y_actual*pitch + x])) { expected->UnlockRect(); actual->UnlockRect(); GTEST_FAIL() << "Pixels (" << x << ", " << y << ") vs. " << "(" << x << ", " << y_actual << ")"; } } expected->UnlockRect(); actual->UnlockRect(); } protected: DWORD RandomColor() { return random_dword_(rng_); } void set_color_error_tolerance(int value) { color_error_tolerance_ = value; } int color_error_tolerance() { return color_error_tolerance_; } void DoResizeBilinearTest(AcceleratedSurfaceTransformer* gpu_ops, const gfx::Size& src_size, const gfx::Size& dst_size, int checkerboard_size) { SCOPED_TRACE( StringPrintf("Resizing %dx%d -> %dx%d at checkerboard size of %d", src_size.width(), src_size.height(), dst_size.width(), dst_size.height(), checkerboard_size)); set_color_error_tolerance(4); base::win::ScopedComPtr<IDirect3DSurface9> src, dst; ASSERT_TRUE(d3d_utils::CreateTemporaryLockableSurface( device(), src_size, src.Receive())) << "Could not create src render target"; ASSERT_TRUE(d3d_utils::CreateTemporaryLockableSurface( device(), dst_size, dst.Receive())) << "Could not create dst render target"; FillSymmetricRandomCheckerboard(src, src_size, checkerboard_size); ASSERT_TRUE(gpu_ops->ResizeBilinear(src, gfx::Rect(src_size), dst, gfx::Rect(dst_size))); AssertSymmetry(dst, dst_size); } void CreateRandomCheckerboardTexture( const gfx::Size& size, int checkerboard_size, IDirect3DSurface9** reference_surface, IDirect3DTexture9** result) { base::win::ScopedComPtr<IDirect3DSurface9> dst; ASSERT_TRUE(d3d_utils::CreateTemporaryLockableSurface(device(), size, reference_surface)); ASSERT_TRUE(d3d_utils::CreateTemporaryRenderTargetTexture(device(), size, result, dst.Receive())); FillRandomCheckerboard(*reference_surface, size, checkerboard_size); ASSERT_HRESULT_SUCCEEDED( device()->StretchRect( *reference_surface, NULL, dst, NULL, D3DTEXF_NONE)); } void AssertSame(int width_in_bytes, int height, uint8* reference, IDirect3DSurface9* lockable) { BeforeLockWorkaround(); D3DLOCKED_RECT locked_rect; ASSERT_HRESULT_SUCCEEDED( lockable->LockRect(&locked_rect, NULL, D3DLOCK_READONLY)); uint8* actual = reinterpret_cast<uint8*>(locked_rect.pBits); for (int y = 0; y < height; ++y) { for (int x = 0; x < width_in_bytes; ++x) { if (!AssertSameColor(reference[y * width_in_bytes + x], actual[y * locked_rect.Pitch + x])) { lockable->UnlockRect(); GTEST_FAIL() << "At pixel (" << x << ", " << y << ")"; } } } lockable->UnlockRect(); } void DoCopyInvertedTest(AcceleratedSurfaceTransformer* gpu_ops, const gfx::Size& size) { SCOPED_TRACE( StringPrintf("CopyInverted @ %dx%d", size.width(), size.height())); set_color_error_tolerance(0); base::win::ScopedComPtr<IDirect3DSurface9> dst, reference_pattern; base::win::ScopedComPtr<IDirect3DTexture9> src; CreateRandomCheckerboardTexture(size, 1, reference_pattern.Receive(), src.Receive()); // Alloc a slightly larger image 75% of the time, to test that the // viewport is set properly. const int kAlign = 4; gfx::Size alloc_size((size.width() + kAlign - 1) / kAlign * kAlign, (size.height() + kAlign - 1) / kAlign * kAlign); ASSERT_TRUE(d3d_utils::CreateTemporaryLockableSurface(device(), alloc_size, dst.Receive())) << "Could not create dst render target."; ASSERT_TRUE(gpu_ops->CopyInverted(src, dst, size)); AssertIsInvertedCopy(size, reference_pattern, dst); } void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops, const gfx::Size& src_size, int checkerboard_size) { // Test the non-MRT implementation, and the MRT implementation as well // (if supported by the device). ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(gpu_ops, src_size, src_size, checkerboard_size, false)); if (gpu_ops->device_supports_multiple_render_targets()) { ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(gpu_ops, src_size, src_size, checkerboard_size, true)); } } void DoYUVConversionScaleTest(AcceleratedSurfaceTransformer* gpu_ops, const gfx::Size& src_size, const gfx::Size& dst_size) { // Test the non-MRT implementation, and the MRT implementation as well // (if supported by the device). if (gpu_ops->device_supports_multiple_render_targets()) { ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, true)); } ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(gpu_ops, src_size, dst_size, 4, false)); } void DoYUVConversionTest(AcceleratedSurfaceTransformer* gpu_ops, const gfx::Size& src_size, const gfx::Size& dst_size, int checkerboard_size, boolean use_multi_render_targets) { SCOPED_TRACE( StringPrintf("YUV Converting %dx%d at checkerboard size of %d; MRT %s", src_size.width(), src_size.height(), checkerboard_size, use_multi_render_targets ? "enabled" : "disabled")); base::win::ScopedComPtr<IDirect3DTexture9> src; base::win::ScopedComPtr<IDirect3DSurface9> reference; base::win::ScopedComPtr<IDirect3DSurface9> dst_y, dst_u, dst_v; // TODO(ncarter): Use a better error metric that measures aggregate error // rather than simply max error. There seems to be slightly more error at // higher resolutions, maybe due to precision issues during rasterization // (or maybe more pixels = more test trials). Results are usually to an // error of 1, but we must use a tolerance of 3. set_color_error_tolerance(3); CreateRandomCheckerboardTexture( src_size, checkerboard_size, reference.Receive(), src.Receive()); gfx::Size packed_y_size, packed_uv_size; ASSERT_TRUE(gpu_ops->AllocYUVBuffers(dst_size, &packed_y_size, &packed_uv_size, dst_y.Receive(), dst_u.Receive(), dst_v.Receive())); // Actually do the conversion. if (use_multi_render_targets) { ASSERT_TRUE(gpu_ops->TransformRGBToYV12_MRT(src, dst_size, packed_y_size, packed_uv_size, dst_y, dst_u, dst_v)); } else { ASSERT_TRUE(gpu_ops->TransformRGBToYV12_WithoutMRT(src, dst_size, packed_y_size, packed_uv_size, dst_y, dst_u, dst_v)); } // UV size (in bytes/samples) is half, rounded up. gfx::Size uv_size((dst_size.width() + 1) / 2, (dst_size.height() + 1) / 2); // Generate a reference bitmap by calling a software implementation. SkBitmap reference_rgb = ToSkBitmap(reference, false); SkBitmap reference_rgb_scaled; if (dst_size == src_size) { reference_rgb_scaled = reference_rgb; } else { // We'll call Copy to do the bilinear scaling if needed. base::win::ScopedComPtr<IDirect3DSurface9> reference_scaled; ASSERT_TRUE( d3d_utils::CreateTemporaryLockableSurface( device(), dst_size, reference_scaled.Receive())); ASSERT_TRUE( gpu_ops->Copy(src, reference_scaled, dst_size)); BeforeLockWorkaround(); reference_rgb_scaled = ToSkBitmap(reference_scaled, false); } scoped_ptr<uint8[]> reference_y(new uint8[dst_size.GetArea()]); scoped_ptr<uint8[]> reference_u(new uint8[uv_size.GetArea()]); scoped_ptr<uint8[]> reference_v(new uint8[uv_size.GetArea()]); reference_rgb_scaled.lockPixels(); media::ConvertRGB32ToYUV_SSE2_Reference( reinterpret_cast<uint8*>(reference_rgb_scaled.getAddr32(0, 0)), &reference_y[0], &reference_u[0], &reference_v[0], dst_size.width(), dst_size.height(), reference_rgb_scaled.rowBytes(), dst_size.width(), uv_size.width()); reference_rgb_scaled.unlockPixels(); // Check for equality of the reference and the actual. AssertSame(dst_size.width(), dst_size.height(), &reference_y[0], dst_y); AssertSame(uv_size.width(), uv_size.height(), &reference_u[0], dst_u); AssertSame(uv_size.width(), uv_size.height(), &reference_v[0], dst_v); if (kDumpImagesOnFailure && HasFatalFailure()) { // Note that this will dump the full u and v buffers, including // extra columns added due to packing. That means up to 7 extra // columns for uv, and up to 3 extra columns for y. WritePNGFile(reference_rgb, base::FilePath(FILE_PATH_LITERAL("test_fail_src.png"))); WritePNGFile(reference_rgb_scaled, base::FilePath( FILE_PATH_LITERAL("test_fail_src_scaled.png"))); WritePNGFile(ToSkBitmap(dst_y, true), base::FilePath(FILE_PATH_LITERAL("test_fail_y.png"))); WritePNGFile(ToSkBitmap(dst_u, true), base::FilePath(FILE_PATH_LITERAL("test_fail_u.png"))); WritePNGFile(ToSkBitmap(dst_v, true), base::FilePath(FILE_PATH_LITERAL("test_fail_v.png"))); } } int color_error_tolerance_; uniform_int_distribution<DWORD> random_dword_; std::mt19937 rng_; base::ScopedNativeLibrary d3d_module_; base::win::ScopedComPtr<IDirect3DDevice9Ex> device_; }; // Fails on some bots because Direct3D isn't allowed. TEST_P(AcceleratedSurfaceTransformerTest, Init) { SCOPED_TRACE(GetAdapterInfo()); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); WarnOnMissingFeatures(&gpu_ops); }; // Fails on some bots because Direct3D isn't allowed. TEST_P(AcceleratedSurfaceTransformerTest, TestConsistentRandom) { // This behavior should be the same for every execution on every machine. // Otherwise tests might be flaky and impossible to debug. SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom"); ASSERT_EQ(2922058934, RandomColor()); SeedRandom("AcceleratedSurfaceTransformerTest.TestConsistentRandom"); ASSERT_EQ(2922058934, RandomColor()); ASSERT_EQ(4050239976, RandomColor()); SeedRandom("DifferentSeed"); ASSERT_EQ(3904108833, RandomColor()); } // Fails on some bots because Direct3D isn't allowed. TEST_P(AcceleratedSurfaceTransformerTest, CopyInverted) { // This behavior should be the same for every execution on every machine. // Otherwise tests might be flaky and impossible to debug. SCOPED_TRACE(GetAdapterInfo()); SeedRandom("CopyInverted"); AcceleratedSurfaceTransformer t; ASSERT_TRUE(t.Init(device())); uniform_int_distribution<int> size(1, 512); for (int i = 0; i < 100; ++i) { ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(size(rng_), size(rng_)))) << "At iteration " << i; } } // Fails on some bots because Direct3D isn't allowed. // Fails on other bots because of ResizeBilinear symmetry failures. // Should pass, at least, on NVIDIA Quadro 600. TEST_P(AcceleratedSurfaceTransformerTest, MixedOperations) { SCOPED_TRACE(GetAdapterInfo()); SeedRandom("MixedOperations"); AcceleratedSurfaceTransformer t; ASSERT_TRUE(t.Init(device())); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 2)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(20, 107))); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(255, 255), 5)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(256, 256), gfx::Size(64, 64), 5)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&t, gfx::Size(128, 128), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(3, 3), 1)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(1412, 124))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&t, gfx::Size(100, 200), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 2)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(1512, 7))); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(255, 255), gfx::Size(257, 257), 5)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 8)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(1521, 3))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&t, gfx::Size(140, 181), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 256), 1)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(33, 712))); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(150, 256), gfx::Size(126, 8), 8)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&t, gfx::Size(33, 2))); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&t, gfx::Size(200, 256), gfx::Size(126, 8), 8)); } // Tests ResizeBilinear with 16K wide/hight src and dst surfaces. // // Fails on some bots because Direct3D isn't allowed. // Should pass, at least, on NVIDIA Quadro 600. TEST_P(AcceleratedSurfaceTransformerTest, LargeSurfaces) { SCOPED_TRACE(GetAdapterInfo()); SeedRandom("LargeSurfaces"); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); D3DCAPS9 caps; ASSERT_HRESULT_SUCCEEDED( device()->GetDeviceCaps(&caps)); SCOPED_TRACE(StringPrintf("max texture size: %dx%d, max texture aspect: %d", caps.MaxTextureWidth, caps.MaxTextureHeight, caps.MaxTextureAspectRatio)); const int w = caps.MaxTextureWidth; const int h = caps.MaxTextureHeight; const int lo = 256; ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(w, lo), gfx::Size(lo, lo), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, h), gfx::Size(lo, lo), 1)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(w, lo), lo)); ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(lo, lo), gfx::Size(lo, h), lo)); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&gpu_ops, gfx::Size(w, lo))); ASSERT_NO_FATAL_FAILURE( DoCopyInvertedTest(&gpu_ops, gfx::Size(lo, h))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(w, lo), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(lo, h), 1)); } // Exercises ResizeBilinear with random minification cases where the // aspect ratio does not change. // // Fails on some bots because Direct3D isn't allowed. // Fails on other bots because of StretchRect symmetry failures. // Should pass, at least, on NVIDIA Quadro 600. TEST_P(AcceleratedSurfaceTransformerTest, MinifyUniform) { SCOPED_TRACE(GetAdapterInfo()); SeedRandom("MinifyUniform"); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); const int dims[] = {21, 63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257}; const int checkerboards[] = {1, 2, 3, 9}; uniform_int_distribution<int> dim(0, arraysize(dims) - 1); uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1); for (int i = 0; i < 300; i++) { // Widths are picked so that dst is smaller than src. int dst_width = dims[dim(rng_)]; int src_width = dims[dim(rng_)]; if (src_width < dst_width) std::swap(dst_width, src_width); // src_height is picked to preserve aspect ratio. int dst_height = dims[dim(rng_)]; int src_height = static_cast<int>( static_cast<int64>(src_width) * dst_height / dst_width); int checkerboard_size = checkerboards[checkerboard(rng_)]; ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(src_width, src_height), // Src size (larger) gfx::Size(dst_width, dst_height), // Dst size (smaller) checkerboard_size)) << "Failed on iteration " << i; } }; // Exercises ResizeBilinear with random magnification cases where the // aspect ratio does not change. // // This test relies on an assertion that resizing preserves symmetry in the // image, but for the current implementation of ResizeBilinear, this does not // seem to be true (fails on NVIDIA Quadro 600; passes on // Intel Mobile 965 Express) TEST_P(AcceleratedSurfaceTransformerTest, DISABLED_MagnifyUniform) { SCOPED_TRACE(GetAdapterInfo()); SeedRandom("MagnifyUniform"); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); const int dims[] = {63, 64, 65, 99, 127, 128, 129, 192, 255, 256, 257}; const int checkerboards[] = {1, 2, 3, 9}; uniform_int_distribution<int> dim(0, arraysize(dims) - 1); uniform_int_distribution<int> checkerboard(0, arraysize(checkerboards) - 1); for (int i = 0; i < 50; i++) { // Widths are picked so that src is smaller than dst. int dst_width = dims[dim(rng_)]; int src_width = dims[dim(rng_)]; if (dst_width < src_width) std::swap(src_width, dst_width); int dst_height = dims[dim(rng_)]; int src_height = static_cast<int>( static_cast<int64>(src_width) * dst_height / dst_width); int checkerboard_size = checkerboards[checkerboard(rng_)]; ASSERT_NO_FATAL_FAILURE( DoResizeBilinearTest(&gpu_ops, gfx::Size(src_width, src_height), // Src size (smaller) gfx::Size(dst_width, dst_height), // Dst size (larger) checkerboard_size)) << "Failed on iteration " << i; } }; TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUV) { SeedRandom("RGBtoYUV"); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); // Start with some easy-to-debug cases. A checkerboard size of 1 is the // best test, but larger checkerboard sizes give more insight into where // a bug might be. ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 4)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 2)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(32, 32), 3)); // All cases of width (mod 8) and height (mod 8), using 1x1 checkerboard. for (int w = 32; w < 40; ++w) { for (int h = 32; h < 40; ++h) { ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1)); } } // All the very small sizes which require the most shifting in the // texture coordinates when doing alignment. for (int w = 1; w <= 9; ++w) { for (int h = 1; h <= 9; ++h) { ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(w, h), 1)); } } // Random medium dimensions. ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(10, 142), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(124, 333), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(853, 225), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(231, 412), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(512, 128), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1)); // Common video/monitor resolutions ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(800, 768), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1024, 768), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1280, 720), 2)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 1)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(1920, 1080), 2)); ASSERT_NO_FATAL_FAILURE( DoYUVConversionTest(&gpu_ops, gfx::Size(2048, 1536), 1)); } TEST_P(AcceleratedSurfaceTransformerTest, RGBtoYUVScaled) { SeedRandom("RGBtoYUVScaled"); AcceleratedSurfaceTransformer gpu_ops; ASSERT_TRUE(gpu_ops.Init(device())); ASSERT_NO_FATAL_FAILURE( DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(64, 64))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(16, 16))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(24, 24))); ASSERT_NO_FATAL_FAILURE( DoYUVConversionScaleTest(&gpu_ops, gfx::Size(32, 32), gfx::Size(48, 48))); } namespace { // Used to suppress test on Windows versions prior to Vista. std::vector<int> WindowsVersionIfVistaOrBetter() { std::vector<int> result; if (base::win::GetVersion() >= base::win::VERSION_VISTA) { result.push_back(base::win::GetVersion()); } return result; } } // namespace INSTANTIATE_TEST_CASE_P(VistaAndUp, AcceleratedSurfaceTransformerTest, ::testing::ValuesIn(WindowsVersionIfVistaOrBetter()));