// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ui/surface/accelerated_surface_win.h" #include #include #include #include "accelerated_surface_win_hlsl_compiled.h" #include "base/bind.h" #include "base/bind_helpers.h" #include "base/callback.h" #include "base/command_line.h" #include "base/debug/trace_event.h" #include "base/file_path.h" #include "base/lazy_instance.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop_proxy.h" #include "base/scoped_native_library.h" #include "base/string_number_conversions.h" #include "base/stringprintf.h" #include "base/synchronization/waitable_event.h" #include "base/threading/thread.h" #include "base/threading/thread_restrictions.h" #include "base/time.h" #include "base/tracked_objects.h" #include "base/win/wrapped_window_proc.h" #include "ui/base/win/hwnd_util.h" #include "ui/gfx/rect.h" #include "ui/gl/gl_switches.h" using ui_surface::AcceleratedSurfaceWinHLSL::kVsOneTexture; using ui_surface::AcceleratedSurfaceWinHLSL::kPsOneTexture; namespace { typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT sdk_version, IDirect3D9Ex **d3d); const wchar_t kD3D9ModuleName[] = L"d3d9.dll"; const char kCreate3D9DeviceExName[] = "Direct3DCreate9Ex"; const char kUseOcclusionQuery[] = "use-occlusion-query"; struct Vertex { float x, y, z, w; float u, v; }; const static D3DVERTEXELEMENT9 g_vertexElements[] = { { 0, 0, D3DDECLTYPE_FLOAT4, 0, D3DDECLUSAGE_POSITION, 0 }, { 0, 16, D3DDECLTYPE_FLOAT2, 0, D3DDECLUSAGE_TEXCOORD, 0 }, D3DDECL_END() }; UINT GetPresentationInterval() { if (CommandLine::ForCurrentProcess()->HasSwitch(switches::kDisableGpuVsync)) return D3DPRESENT_INTERVAL_IMMEDIATE; else return D3DPRESENT_INTERVAL_ONE; } bool UsingOcclusionQuery() { return CommandLine::ForCurrentProcess()->HasSwitch(kUseOcclusionQuery); } // Calculate the number necessary to transform |src_subrect| into |dst_size| // by repeating downsampling of the image of |src_subrect| by a factor no more // than 2. int GetResampleCount(const gfx::Rect& src_subrect, const gfx::Size& dst_size, const gfx::Size& back_buffer_size) { // At least one copy is required, since the back buffer itself is not // lockable. int min_resample_count = 1; int width_count = 0; int width = src_subrect.width(); while (width > dst_size.width()) { ++width_count; width >>= 1; } int height_count = 0; int height = src_subrect.height(); while (height > dst_size.height()) { ++height_count; height >>= 1; } return std::max(std::max(width_count, height_count), min_resample_count); } // Returns half the size of |size| no smaller than |min_size|. gfx::Size GetHalfSizeNoLessThan(const gfx::Size& size, const gfx::Size& min_size) { return gfx::Size(std::max(min_size.width(), size.width() / 2), std::max(min_size.height(), size.height() / 2)); } bool CreateTemporarySurface(IDirect3DDevice9* device, const gfx::Size& size, IDirect3DSurface9** surface) { HRESULT hr = device->CreateRenderTarget( size.width(), size.height(), D3DFMT_A8R8G8B8, D3DMULTISAMPLE_NONE, 0, TRUE, surface, NULL); return SUCCEEDED(hr); } } // namespace // A PresentThread is a thread that is dedicated to presenting surfaces to a // window. It owns a Direct3D device and a Direct3D query for this purpose. class PresentThread : public base::Thread, public base::RefCountedThreadSafe { public: explicit PresentThread(const char* name); IDirect3DDevice9Ex* device() { return device_.get(); } IDirect3DQuery9* query() { return query_.get(); } void InitDevice(); void ResetDevice(); protected: virtual void Init(); virtual void CleanUp(); private: friend class base::RefCountedThreadSafe; ~PresentThread(); base::ScopedNativeLibrary d3d_module_; base::win::ScopedComPtr device_; // This query is used to wait until a certain amount of progress has been // made by the GPU and it is safe for the producer to modify its shared // texture again. base::win::ScopedComPtr query_; DISALLOW_COPY_AND_ASSIGN(PresentThread); }; // There is a fixed sized pool of PresentThreads and therefore the maximum // number of Direct3D devices owned by those threads is bounded. class PresentThreadPool { public: static const int kNumPresentThreads = 4; PresentThreadPool(); PresentThread* NextThread(); private: int next_thread_; scoped_refptr present_threads_[kNumPresentThreads]; DISALLOW_COPY_AND_ASSIGN(PresentThreadPool); }; // A thread safe map of presenters by surface ID that returns presenters via // a scoped_refptr to keep them alive while they are referenced. class AcceleratedPresenterMap { public: AcceleratedPresenterMap(); scoped_refptr CreatePresenter( gfx::PluginWindowHandle window); void RemovePresenter(const scoped_refptr& presenter); scoped_refptr GetPresenter( gfx::PluginWindowHandle window); private: base::Lock lock_; typedef std::map PresenterMap; PresenterMap presenters_; DISALLOW_COPY_AND_ASSIGN(AcceleratedPresenterMap); }; base::LazyInstance g_present_thread_pool = LAZY_INSTANCE_INITIALIZER; base::LazyInstance g_accelerated_presenter_map = LAZY_INSTANCE_INITIALIZER; PresentThread::PresentThread(const char* name) : base::Thread(name) { } void PresentThread::InitDevice() { if (device_) return; TRACE_EVENT0("gpu", "PresentThread::Init"); d3d_module_.Reset(base::LoadNativeLibrary(FilePath(kD3D9ModuleName), NULL)); ResetDevice(); } void PresentThread::ResetDevice() { TRACE_EVENT0("gpu", "PresentThread::ResetDevice"); // This will crash some Intel drivers but we can't render anything without // reseting the device, which would be disappointing. query_ = NULL; device_ = NULL; Direct3DCreate9ExFunc create_func = reinterpret_cast( d3d_module_.GetFunctionPointer(kCreate3D9DeviceExName)); if (!create_func) return; base::win::ScopedComPtr d3d; HRESULT hr = create_func(D3D_SDK_VERSION, d3d.Receive()); if (FAILED(hr)) return; // Any old window will do to create the device. In practice the window to // present to is an argument to IDirect3DDevice9::Present. HWND window = GetShellWindow(); D3DPRESENT_PARAMETERS parameters = { 0 }; parameters.BackBufferWidth = 1; parameters.BackBufferHeight = 1; parameters.BackBufferCount = 1; parameters.BackBufferFormat = D3DFMT_A8R8G8B8; parameters.hDeviceWindow = window; parameters.Windowed = TRUE; parameters.Flags = 0; parameters.PresentationInterval = GetPresentationInterval(); parameters.SwapEffect = D3DSWAPEFFECT_COPY; hr = d3d->CreateDeviceEx( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, window, D3DCREATE_FPU_PRESERVE | D3DCREATE_SOFTWARE_VERTEXPROCESSING | D3DCREATE_DISABLE_PSGP_THREADING | D3DCREATE_MULTITHREADED, ¶meters, NULL, device_.Receive()); if (FAILED(hr)) return; if (UsingOcclusionQuery()) { hr = device_->CreateQuery(D3DQUERYTYPE_OCCLUSION, query_.Receive()); if (FAILED(hr)) { device_ = NULL; return; } } else { hr = device_->CreateQuery(D3DQUERYTYPE_EVENT, query_.Receive()); if (FAILED(hr)) { device_ = NULL; return; } } base::win::ScopedComPtr vertex_shader; hr = device_->CreateVertexShader( reinterpret_cast(kVsOneTexture), vertex_shader.Receive()); if (FAILED(hr)) { device_ = NULL; query_ = NULL; return; } device_->SetVertexShader(vertex_shader); base::win::ScopedComPtr pixel_shader; hr = device_->CreatePixelShader( reinterpret_cast(kPsOneTexture), pixel_shader.Receive()); if (FAILED(hr)) { device_ = NULL; query_ = NULL; return; } device_->SetPixelShader(pixel_shader); base::win::ScopedComPtr vertex_declaration; hr = device_->CreateVertexDeclaration(g_vertexElements, vertex_declaration.Receive()); if (FAILED(hr)) { device_ = NULL; query_ = NULL; return; } device_->SetVertexDeclaration(vertex_declaration); } void PresentThread::Init() { TRACE_EVENT0("gpu", "Initialize thread"); } void PresentThread::CleanUp() { // The D3D device and query are leaked because destroying the associated D3D // query crashes some Intel drivers. device_.Detach(); query_.Detach(); } PresentThread::~PresentThread() { Stop(); } PresentThreadPool::PresentThreadPool() : next_thread_(0) { } PresentThread* PresentThreadPool::NextThread() { next_thread_ = (next_thread_ + 1) % kNumPresentThreads; PresentThread* thread = present_threads_[next_thread_].get(); if (!thread) { thread = new PresentThread( base::StringPrintf("PresentThread #%d", next_thread_).c_str()); thread->Start(); present_threads_[next_thread_] = thread; } return thread; } AcceleratedPresenterMap::AcceleratedPresenterMap() { } scoped_refptr AcceleratedPresenterMap::CreatePresenter( gfx::PluginWindowHandle window) { scoped_refptr presenter( new AcceleratedPresenter(window)); base::AutoLock locked(lock_); DCHECK(presenters_.find(window) == presenters_.end()); presenters_[window] = presenter.get(); return presenter; } void AcceleratedPresenterMap::RemovePresenter( const scoped_refptr& presenter) { base::AutoLock locked(lock_); for (PresenterMap::iterator it = presenters_.begin(); it != presenters_.end(); ++it) { if (it->second == presenter.get()) { presenters_.erase(it); return; } } NOTREACHED(); } scoped_refptr AcceleratedPresenterMap::GetPresenter( gfx::PluginWindowHandle window) { base::AutoLock locked(lock_); #if defined(USE_AURA) if (!window) return presenters_.begin()->second; #endif PresenterMap::iterator it = presenters_.find(window); if (it == presenters_.end()) return scoped_refptr(); return it->second; } AcceleratedPresenter::AcceleratedPresenter(gfx::PluginWindowHandle window) : present_thread_(g_present_thread_pool.Pointer()->NextThread()), window_(window), event_(false, false), hidden_(true) { } scoped_refptr AcceleratedPresenter::GetForWindow( gfx::PluginWindowHandle window) { return g_accelerated_presenter_map.Pointer()->GetPresenter(window); } void AcceleratedPresenter::AsyncPresentAndAcknowledge( const gfx::Size& size, int64 surface_handle, const CompletionTask& completion_task) { if (!surface_handle) { TRACE_EVENT1("gpu", "EarlyOut_ZeroSurfaceHandle", "surface_handle", surface_handle); completion_task.Run(true, base::TimeTicks(), base::TimeDelta()); return; } present_thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&AcceleratedPresenter::DoPresentAndAcknowledge, this, size, surface_handle, completion_task)); } void AcceleratedPresenter::Present(HDC dc) { TRACE_EVENT0("gpu", "Present"); base::AutoLock locked(lock_); // If invalidated, do nothing. The window is gone. if (!window_) return; // Suspended or nothing has ever been presented. if (!swap_chain_) return; PresentWithGDI(dc); } void AcceleratedPresenter::AsyncCopyTo( const gfx::Rect& requested_src_subrect, const gfx::Size& dst_size, void* buf, const base::Callback& callback) { present_thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&AcceleratedPresenter::DoCopyToAndAcknowledge, this, requested_src_subrect, dst_size, buf, base::MessageLoopProxy::current(), callback)); } void AcceleratedPresenter::DoCopyToAndAcknowledge( const gfx::Rect& src_subrect, const gfx::Size& dst_size, void* buf, scoped_refptr callback_runner, const base::Callback& callback) { bool result = DoCopyTo(src_subrect, dst_size, buf); callback_runner->PostTask( FROM_HERE, base::Bind(callback, result)); } bool AcceleratedPresenter::DoCopyTo(const gfx::Rect& requested_src_subrect, const gfx::Size& dst_size, void* buf) { TRACE_EVENT2( "gpu", "CopyTo", "width", dst_size.width(), "height", dst_size.height()); base::AutoLock locked(lock_); TRACE_EVENT0("gpu", "CopyTo_locked"); if (!swap_chain_) return false; base::win::ScopedComPtr back_buffer; HRESULT hr = swap_chain_->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, back_buffer.Receive()); if (FAILED(hr)) return false; D3DSURFACE_DESC desc; hr = back_buffer->GetDesc(&desc); if (FAILED(hr)) return false; const gfx::Size back_buffer_size(desc.Width, desc.Height); if (back_buffer_size.IsEmpty()) return false; // With window resizing, it's possible that the back buffer is smaller than // the requested src subset. Clip to the actual back buffer. gfx::Rect src_subrect = requested_src_subrect; src_subrect.Intersect(gfx::Rect(back_buffer_size)); // Set up intermediate buffers needed for downsampling. const int resample_count = GetResampleCount(src_subrect, dst_size, back_buffer_size); base::win::ScopedComPtr final_surface; base::win::ScopedComPtr temp_buffer[2]; if (resample_count == 0) final_surface = back_buffer; if (resample_count > 0) { TRACE_EVENT0("gpu", "CreateTemporarySurface"); if (!CreateTemporarySurface(present_thread_->device(), dst_size, final_surface.Receive())) return false; } const gfx::Size half_size = GetHalfSizeNoLessThan(src_subrect.size(), dst_size); if (resample_count > 1) { TRACE_EVENT0("gpu", "CreateTemporarySurface"); if (!CreateTemporarySurface(present_thread_->device(), half_size, temp_buffer[0].Receive())) return false; } if (resample_count > 2) { TRACE_EVENT0("gpu", "CreateTemporarySurface"); const gfx::Size quarter_size = GetHalfSizeNoLessThan(half_size, dst_size); if (!CreateTemporarySurface(present_thread_->device(), quarter_size, temp_buffer[1].Receive())) return false; } // Repeat downsampling the surface until its size becomes identical to // |dst_size|. We keep the factor of each downsampling no more than two // because using a factor more than two can introduce aliasing. RECT read_rect = src_subrect.ToRECT(); gfx::Size write_size = half_size; int read_buffer_index = 1; int write_buffer_index = 0; for (int i = 0; i < resample_count; ++i) { TRACE_EVENT0("gpu", "StretchRect"); base::win::ScopedComPtr read_buffer = (i == 0) ? back_buffer : temp_buffer[read_buffer_index]; base::win::ScopedComPtr write_buffer = (i == resample_count - 1) ? final_surface : temp_buffer[write_buffer_index]; RECT write_rect = gfx::Rect(write_size).ToRECT(); hr = present_thread_->device()->StretchRect(read_buffer, &read_rect, write_buffer, &write_rect, D3DTEXF_LINEAR); if (FAILED(hr)) return false; read_rect = write_rect; write_size = GetHalfSizeNoLessThan(write_size, dst_size); std::swap(read_buffer_index, write_buffer_index); } D3DLOCKED_RECT locked_rect; // Empirical evidence seems to suggest that LockRect and memcpy are faster // than would be GetRenderTargetData to an offscreen surface wrapping *buf. { TRACE_EVENT0("gpu", "LockRect"); hr = final_surface->LockRect(&locked_rect, NULL, D3DLOCK_READONLY | D3DLOCK_NOSYSLOCK); if (FAILED(hr)) return false; } { TRACE_EVENT0("gpu", "memcpy"); size_t bytesPerDstRow = 4 * dst_size.width(); size_t bytesPerSrcRow = locked_rect.Pitch; if (bytesPerDstRow == bytesPerSrcRow) { memcpy(reinterpret_cast(buf), reinterpret_cast(locked_rect.pBits), bytesPerDstRow * dst_size.height()); } else { for (int i = 0; i < dst_size.height(); ++i) { memcpy(reinterpret_cast(buf) + bytesPerDstRow * i, reinterpret_cast(locked_rect.pBits) + bytesPerSrcRow * i, bytesPerDstRow); } } } final_surface->UnlockRect(); return true; } void AcceleratedPresenter::Suspend() { present_thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&AcceleratedPresenter::DoSuspend, this)); } void AcceleratedPresenter::WasHidden() { base::AutoLock locked(lock_); hidden_ = true; } void AcceleratedPresenter::ReleaseSurface() { present_thread_->message_loop()->PostTask( FROM_HERE, base::Bind(&AcceleratedPresenter::DoReleaseSurface, this)); } void AcceleratedPresenter::Invalidate() { // Make any pending or future presentation tasks do nothing. Once the last // last pending task has been ignored, the reference count on the presenter // will go to zero and the presenter, and potentially also the present thread // it has a reference count on, will be destroyed. base::AutoLock locked(lock_); window_ = NULL; } #if defined(USE_AURA) void AcceleratedPresenter::SetNewTargetWindow(gfx::PluginWindowHandle window) { window_ = window; } #endif AcceleratedPresenter::~AcceleratedPresenter() { } static base::TimeDelta GetSwapDelay() { CommandLine* cmd_line = CommandLine::ForCurrentProcess(); int delay = 0; if (cmd_line->HasSwitch(switches::kGpuSwapDelay)) { base::StringToInt(cmd_line->GetSwitchValueNative( switches::kGpuSwapDelay).c_str(), &delay); } return base::TimeDelta::FromMilliseconds(delay); } void AcceleratedPresenter::DoPresentAndAcknowledge( const gfx::Size& size, int64 surface_handle, const CompletionTask& completion_task) { TRACE_EVENT2( "gpu", "DoPresentAndAcknowledge", "width", size.width(), "height", size.height()); HRESULT hr; base::AutoLock locked(lock_); // Initialize the device lazily since calling Direct3D can crash bots. present_thread_->InitDevice(); if (!present_thread_->device()) { if (!completion_task.is_null()) completion_task.Run(false, base::TimeTicks(), base::TimeDelta()); TRACE_EVENT0("gpu", "EarlyOut_NoDevice"); return; } // Ensure the task is always run and while the lock is taken. base::ScopedClosureRunner scoped_completion_runner( base::Bind(completion_task, true, base::TimeTicks(), base::TimeDelta())); // If invalidated, do nothing, the window is gone. if (!window_) { TRACE_EVENT0("gpu", "EarlyOut_NoWindow"); return; } #if !defined(USE_AURA) // If the window is a different size than the swap chain that is being // presented then drop the frame. gfx::Size window_size = GetWindowSize(); if (hidden_ && size != window_size) { TRACE_EVENT2("gpu", "EarlyOut_WrongWindowSize", "backwidth", size.width(), "backheight", size.height()); TRACE_EVENT2("gpu", "EarlyOut_WrongWindowSize2", "windowwidth", window_size.width(), "windowheight", window_size.height()); return; } #endif // Round up size so the swap chain is not continuously resized with the // surface, which could lead to memory fragmentation. const int kRound = 64; gfx::Size quantized_size( std::max(1, (size.width() + kRound - 1) / kRound * kRound), std::max(1, (size.height() + kRound - 1) / kRound * kRound)); // Ensure the swap chain exists and is the same size (rounded up) as the // surface to be presented. if (!swap_chain_ || quantized_size_ != quantized_size) { TRACE_EVENT0("gpu", "CreateAdditionalSwapChain"); quantized_size_ = quantized_size; D3DPRESENT_PARAMETERS parameters = { 0 }; parameters.BackBufferWidth = quantized_size.width(); parameters.BackBufferHeight = quantized_size.height(); parameters.BackBufferCount = 1; parameters.BackBufferFormat = D3DFMT_A8R8G8B8; parameters.hDeviceWindow = GetShellWindow(); parameters.Windowed = TRUE; parameters.Flags = 0; parameters.PresentationInterval = GetPresentationInterval(); parameters.SwapEffect = D3DSWAPEFFECT_COPY; swap_chain_ = NULL; HRESULT hr = present_thread_->device()->CreateAdditionalSwapChain( ¶meters, swap_chain_.Receive()); if (FAILED(hr)) return; } if (!source_texture_.get()) { TRACE_EVENT0("gpu", "CreateTexture"); HANDLE handle = reinterpret_cast(surface_handle); hr = present_thread_->device()->CreateTexture(size.width(), size.height(), 1, D3DUSAGE_RENDERTARGET, D3DFMT_A8R8G8B8, D3DPOOL_DEFAULT, source_texture_.Receive(), &handle); if (FAILED(hr)) return; } base::win::ScopedComPtr source_surface; hr = source_texture_->GetSurfaceLevel(0, source_surface.Receive()); if (FAILED(hr)) { TRACE_EVENT0("gpu", "EarlyOut_NoSurfaceLevel"); return; } base::win::ScopedComPtr dest_surface; hr = swap_chain_->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, dest_surface.Receive()); if (FAILED(hr)) { TRACE_EVENT0("gpu", "EarlyOut_NoBackbuffer"); return; } RECT rect = { 0, 0, size.width(), size.height() }; { TRACE_EVENT0("gpu", "Copy"); // Use a simple pixel / vertex shader pair to render a quad that flips the // source texture on the vertical axis. IDirect3DSurface9 *default_render_target = NULL; present_thread_->device()->GetRenderTarget(0, &default_render_target); present_thread_->device()->SetRenderTarget(0, dest_surface); present_thread_->device()->SetTexture(0, source_texture_); D3DVIEWPORT9 viewport = { 0, 0, size.width(), size.height(), 0, 1 }; present_thread_->device()->SetViewport(&viewport); float halfPixelX = -1.0f / size.width(); float halfPixelY = 1.0f / size.height(); Vertex vertices[] = { { halfPixelX - 1, halfPixelY + 1, 0.5f, 1, 0, 1 }, { halfPixelX + 1, halfPixelY + 1, 0.5f, 1, 1, 1 }, { halfPixelX + 1, halfPixelY - 1, 0.5f, 1, 1, 0 }, { halfPixelX - 1, halfPixelY - 1, 0.5f, 1, 0, 0 } }; if (UsingOcclusionQuery()) { present_thread_->query()->Issue(D3DISSUE_BEGIN); } present_thread_->device()->BeginScene(); present_thread_->device()->DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, vertices, sizeof(vertices[0])); present_thread_->device()->EndScene(); present_thread_->device()->SetTexture(0, NULL); present_thread_->device()->SetRenderTarget(0, default_render_target); default_render_target->Release(); } hr = present_thread_->query()->Issue(D3DISSUE_END); if (FAILED(hr)) return; present_size_ = size; static const base::TimeDelta swap_delay = GetSwapDelay(); if (swap_delay.ToInternalValue()) base::PlatformThread::Sleep(swap_delay); // If it is expected that Direct3D cannot be used reliably because the window // is resizing, fall back to presenting with GDI. if (CheckDirect3DWillWork()) { TRACE_EVENT0("gpu", "PresentD3D"); hr = swap_chain_->Present(&rect, &rect, window_, NULL, 0); // For latency_tests.cc: UNSHIPPED_TRACE_EVENT_INSTANT0("test_gpu", "CompositorSwapBuffersComplete"); if (FAILED(hr) && FAILED(present_thread_->device()->CheckDeviceState(window_))) { present_thread_->ResetDevice(); } } else { HDC dc = GetDC(window_); PresentWithGDI(dc); ReleaseDC(window_, dc); } // Early out if failed to reset device. if (!present_thread_->device()) return; hidden_ = false; D3DDISPLAYMODE display_mode; hr = present_thread_->device()->GetDisplayMode(0, &display_mode); if (FAILED(hr)) return; D3DRASTER_STATUS raster_status; hr = swap_chain_->GetRasterStatus(&raster_status); if (FAILED(hr)) return; // I can't figure out how to determine how many scanlines are in the // vertical blank so clamp it such that scanline / height <= 1. int clamped_scanline = std::min(raster_status.ScanLine, display_mode.Height); // The Internet says that on some GPUs, the scanline is not available // while in the vertical blank. if (raster_status.InVBlank) clamped_scanline = display_mode.Height; base::TimeTicks current_time = base::TimeTicks::HighResNow(); // Figure out approximately how far back in time the last vsync was based on // the ratio of the raster scanline to the display height. base::TimeTicks last_vsync_time; base::TimeDelta refresh_period; if (display_mode.Height) { last_vsync_time = current_time - base::TimeDelta::FromMilliseconds((clamped_scanline * 1000) / (display_mode.RefreshRate * display_mode.Height)); refresh_period = base::TimeDelta::FromMicroseconds( 1000000 / display_mode.RefreshRate); } // Wait for the StretchRect to complete before notifying the GPU process // that it is safe to write to its backing store again. { TRACE_EVENT0("gpu", "spin"); do { hr = present_thread_->query()->GetData(NULL, 0, D3DGETDATA_FLUSH); if (hr == S_FALSE) Sleep(1); } while (hr == S_FALSE); } scoped_completion_runner.Release(); completion_task.Run(true, last_vsync_time, refresh_period); } void AcceleratedPresenter::DoSuspend() { base::AutoLock locked(lock_); swap_chain_ = NULL; } void AcceleratedPresenter::DoReleaseSurface() { base::AutoLock locked(lock_); present_thread_->InitDevice(); source_texture_.Release(); } void AcceleratedPresenter::PresentWithGDI(HDC dc) { TRACE_EVENT0("gpu", "PresentWithGDI"); if (!present_thread_->device()) return; if (!swap_chain_) return; base::win::ScopedComPtr system_texture; { TRACE_EVENT0("gpu", "CreateSystemTexture"); HRESULT hr = present_thread_->device()->CreateTexture( quantized_size_.width(), quantized_size_.height(), 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_SYSTEMMEM, system_texture.Receive(), NULL); if (FAILED(hr)) return; } base::win::ScopedComPtr system_surface; HRESULT hr = system_texture->GetSurfaceLevel(0, system_surface.Receive()); DCHECK(SUCCEEDED(hr)); base::win::ScopedComPtr back_buffer; hr = swap_chain_->GetBackBuffer(0, D3DBACKBUFFER_TYPE_MONO, back_buffer.Receive()); DCHECK(SUCCEEDED(hr)); { TRACE_EVENT0("gpu", "GetRenderTargetData"); hr = present_thread_->device()->GetRenderTargetData(back_buffer, system_surface); DCHECK(SUCCEEDED(hr)); } D3DLOCKED_RECT locked_surface; hr = system_surface->LockRect(&locked_surface, NULL, D3DLOCK_READONLY); DCHECK(SUCCEEDED(hr)); BITMAPINFO bitmap_info = { { sizeof(BITMAPINFOHEADER), quantized_size_.width(), -quantized_size_.height(), 1, // planes 32, // bitcount BI_RGB }, { {0, 0, 0, 0} } }; { TRACE_EVENT0("gpu", "StretchDIBits"); StretchDIBits(dc, 0, 0, present_size_.width(), present_size_.height(), 0, 0, present_size_.width(), present_size_.height(), locked_surface.pBits, &bitmap_info, DIB_RGB_COLORS, SRCCOPY); } system_surface->UnlockRect(); // For latency_tests.cc: UNSHIPPED_TRACE_EVENT_INSTANT0("test_gpu", "CompositorSwapBuffersComplete"); } gfx::Size AcceleratedPresenter::GetWindowSize() { RECT rect; GetClientRect(window_, &rect); return gfx::Rect(rect).size(); } bool AcceleratedPresenter::CheckDirect3DWillWork() { gfx::Size window_size = GetWindowSize(); if (window_size != last_window_size_ && last_window_size_.GetArea() != 0) { last_window_size_ = window_size; last_window_resize_time_ = base::Time::Now(); return false; } return base::Time::Now() - last_window_resize_time_ > base::TimeDelta::FromMilliseconds(100); } AcceleratedSurface::AcceleratedSurface(gfx::PluginWindowHandle window) : presenter_(g_accelerated_presenter_map.Pointer()->CreatePresenter( window)) { } AcceleratedSurface::~AcceleratedSurface() { g_accelerated_presenter_map.Pointer()->RemovePresenter(presenter_); presenter_->Invalidate(); } void AcceleratedSurface::Present(HDC dc) { presenter_->Present(dc); } void AcceleratedSurface::AsyncCopyTo( const gfx::Rect& src_subrect, const gfx::Size& dst_size, void* buf, const base::Callback& callback) { presenter_->AsyncCopyTo(src_subrect, dst_size, buf, callback); } void AcceleratedSurface::Suspend() { presenter_->Suspend(); } void AcceleratedSurface::WasHidden() { presenter_->WasHidden(); }