// Copyright 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #define _USE_MATH_DEFINES #include #include "testing/gtest/include/gtest/gtest.h" #include "third_party/WebKit/Source/Platform/chromium/public/WebTransformationMatrix.h" #define EXPECT_ROW1_EQ(a, b, c, d, matrix) \ EXPECT_FLOAT_EQ((a), (matrix).m11()); \ EXPECT_FLOAT_EQ((b), (matrix).m21()); \ EXPECT_FLOAT_EQ((c), (matrix).m31()); \ EXPECT_FLOAT_EQ((d), (matrix).m41()); #define EXPECT_ROW2_EQ(a, b, c, d, matrix) \ EXPECT_FLOAT_EQ((a), (matrix).m12()); \ EXPECT_FLOAT_EQ((b), (matrix).m22()); \ EXPECT_FLOAT_EQ((c), (matrix).m32()); \ EXPECT_FLOAT_EQ((d), (matrix).m42()); #define EXPECT_ROW3_EQ(a, b, c, d, matrix) \ EXPECT_FLOAT_EQ((a), (matrix).m13()); \ EXPECT_FLOAT_EQ((b), (matrix).m23()); \ EXPECT_FLOAT_EQ((c), (matrix).m33()); \ EXPECT_FLOAT_EQ((d), (matrix).m43()); #define EXPECT_ROW4_EQ(a, b, c, d, matrix) \ EXPECT_FLOAT_EQ((a), (matrix).m14()); \ EXPECT_FLOAT_EQ((b), (matrix).m24()); \ EXPECT_FLOAT_EQ((c), (matrix).m34()); \ EXPECT_FLOAT_EQ((d), (matrix).m44()); #define EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(expected, actual) \ EXPECT_FLOAT_EQ((expected).m11(), (actual).m11()); \ EXPECT_FLOAT_EQ((expected).m12(), (actual).m12()); \ EXPECT_FLOAT_EQ((expected).m13(), (actual).m13()); \ EXPECT_FLOAT_EQ((expected).m14(), (actual).m14()); \ EXPECT_FLOAT_EQ((expected).m21(), (actual).m21()); \ EXPECT_FLOAT_EQ((expected).m22(), (actual).m22()); \ EXPECT_FLOAT_EQ((expected).m23(), (actual).m23()); \ EXPECT_FLOAT_EQ((expected).m24(), (actual).m24()); \ EXPECT_FLOAT_EQ((expected).m31(), (actual).m31()); \ EXPECT_FLOAT_EQ((expected).m32(), (actual).m32()); \ EXPECT_FLOAT_EQ((expected).m33(), (actual).m33()); \ EXPECT_FLOAT_EQ((expected).m34(), (actual).m34()); \ EXPECT_FLOAT_EQ((expected).m41(), (actual).m41()); \ EXPECT_FLOAT_EQ((expected).m42(), (actual).m42()); \ EXPECT_FLOAT_EQ((expected).m43(), (actual).m43()); \ EXPECT_FLOAT_EQ((expected).m44(), (actual).m44()); // Checking float values for equality close to zero is not robust using EXPECT_FLOAT_EQ // (see gtest documentation). So, to verify rotation matrices, we must use a looser // absolute error threshold in some places. #define EXPECT_ROW1_NEAR(a, b, c, d, matrix, errorThreshold) \ EXPECT_NEAR((a), (matrix).m11(), (errorThreshold)); \ EXPECT_NEAR((b), (matrix).m21(), (errorThreshold)); \ EXPECT_NEAR((c), (matrix).m31(), (errorThreshold)); \ EXPECT_NEAR((d), (matrix).m41(), (errorThreshold)); #define EXPECT_ROW2_NEAR(a, b, c, d, matrix, errorThreshold) \ EXPECT_NEAR((a), (matrix).m12(), (errorThreshold)); \ EXPECT_NEAR((b), (matrix).m22(), (errorThreshold)); \ EXPECT_NEAR((c), (matrix).m32(), (errorThreshold)); \ EXPECT_NEAR((d), (matrix).m42(), (errorThreshold)); #define EXPECT_ROW3_NEAR(a, b, c, d, matrix, errorThreshold) \ EXPECT_NEAR((a), (matrix).m13(), (errorThreshold)); \ EXPECT_NEAR((b), (matrix).m23(), (errorThreshold)); \ EXPECT_NEAR((c), (matrix).m33(), (errorThreshold)); \ EXPECT_NEAR((d), (matrix).m43(), (errorThreshold)); #define ERROR_THRESHOLD 1e-14 #define LOOSE_ERROR_THRESHOLD 1e-7 using namespace WebKit; namespace { static void initializeTestMatrix(WebTransformationMatrix& transform) { transform.setM11(10); transform.setM12(11); transform.setM13(12); transform.setM14(13); transform.setM21(14); transform.setM22(15); transform.setM23(16); transform.setM24(17); transform.setM31(18); transform.setM32(19); transform.setM33(20); transform.setM34(21); transform.setM41(22); transform.setM42(23); transform.setM43(24); transform.setM44(25); // Sanity check EXPECT_ROW1_EQ(10, 14, 18, 22, transform); EXPECT_ROW2_EQ(11, 15, 19, 23, transform); EXPECT_ROW3_EQ(12, 16, 20, 24, transform); EXPECT_ROW4_EQ(13, 17, 21, 25, transform); } static void initializeTestMatrix2(WebTransformationMatrix& transform) { transform.setM11(30); transform.setM12(31); transform.setM13(32); transform.setM14(33); transform.setM21(34); transform.setM22(35); transform.setM23(36); transform.setM24(37); transform.setM31(38); transform.setM32(39); transform.setM33(40); transform.setM34(41); transform.setM41(42); transform.setM42(43); transform.setM43(44); transform.setM44(45); // Sanity check EXPECT_ROW1_EQ(30, 34, 38, 42, transform); EXPECT_ROW2_EQ(31, 35, 39, 43, transform); EXPECT_ROW3_EQ(32, 36, 40, 44, transform); EXPECT_ROW4_EQ(33, 37, 41, 45, transform); } TEST(WebTransformationMatrixTest, verifyDefaultConstructorCreatesIdentityMatrix) { WebTransformationMatrix A; EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); EXPECT_TRUE(A.isIdentity()); } TEST(WebTransformationMatrixTest, verifyConstructorFor2dElements) { WebTransformationMatrix A(1, 2, 3, 4, 5, 6); EXPECT_ROW1_EQ(1, 3, 0, 5, A); EXPECT_ROW2_EQ(2, 4, 0, 6, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyConstructorForAllElements) { WebTransformationMatrix A(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); EXPECT_ROW1_EQ(1, 5, 9, 13, A); EXPECT_ROW2_EQ(2, 6, 10, 14, A); EXPECT_ROW3_EQ(3, 7, 11, 15, A); EXPECT_ROW4_EQ(4, 8, 12, 16, A); } TEST(WebTransformationMatrixTest, verifyCopyConstructor) { WebTransformationMatrix A; initializeTestMatrix(A); // Copy constructor should produce exact same elements as matrix A. WebTransformationMatrix B(A); EXPECT_ROW1_EQ(10, 14, 18, 22, B); EXPECT_ROW2_EQ(11, 15, 19, 23, B); EXPECT_ROW3_EQ(12, 16, 20, 24, B); EXPECT_ROW4_EQ(13, 17, 21, 25, B); } TEST(WebTransformationMatrixTest, verifyMatrixInversion) { // Invert a translation WebTransformationMatrix translation; translation.translate3d(2, 3, 4); EXPECT_TRUE(translation.isInvertible()); WebTransformationMatrix inverseTranslation = translation.inverse(); EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); // Note that inversion should not have changed the original matrix. EXPECT_ROW1_EQ(1, 0, 0, 2, translation); EXPECT_ROW2_EQ(0, 1, 0, 3, translation); EXPECT_ROW3_EQ(0, 0, 1, 4, translation); EXPECT_ROW4_EQ(0, 0, 0, 1, translation); // Invert a non-uniform scale WebTransformationMatrix scale; scale.scale3d(4, 10, 100); EXPECT_TRUE(scale.isInvertible()); WebTransformationMatrix inverseScale = scale.inverse(); EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); // Try to invert a matrix that is not invertible. // The inverse() function should simply return an identity matrix. WebTransformationMatrix notInvertible; notInvertible.setM11(0); notInvertible.setM22(0); notInvertible.setM33(0); notInvertible.setM44(0); EXPECT_FALSE(notInvertible.isInvertible()); WebTransformationMatrix inverseOfNotInvertible; initializeTestMatrix(inverseOfNotInvertible); // initialize this to something non-identity, to make sure that assignment below actually took place. inverseOfNotInvertible = notInvertible.inverse(); EXPECT_TRUE(inverseOfNotInvertible.isIdentity()); } TEST(WebTransformationMatrixTest, verifyTo2DTransform) { WebTransformationMatrix A; initializeTestMatrix(A); WebTransformationMatrix B = A.to2dTransform(); EXPECT_ROW1_EQ(10, 14, 0, 22, B); EXPECT_ROW2_EQ(11, 15, 0, 23, B); EXPECT_ROW3_EQ(0, 0, 1, 0, B); EXPECT_ROW4_EQ(13, 17, 0, 25, B); // Note that to2DTransform should not have changed the original matrix. EXPECT_ROW1_EQ(10, 14, 18, 22, A); EXPECT_ROW2_EQ(11, 15, 19, 23, A); EXPECT_ROW3_EQ(12, 16, 20, 24, A); EXPECT_ROW4_EQ(13, 17, 21, 25, A); } TEST(WebTransformationMatrixTest, verifyAssignmentOperator) { WebTransformationMatrix A; initializeTestMatrix(A); WebTransformationMatrix B; initializeTestMatrix2(B); WebTransformationMatrix C; initializeTestMatrix2(C); C = B = A; // Both B and C should now have been re-assigned to the value of A. EXPECT_ROW1_EQ(10, 14, 18, 22, B); EXPECT_ROW2_EQ(11, 15, 19, 23, B); EXPECT_ROW3_EQ(12, 16, 20, 24, B); EXPECT_ROW4_EQ(13, 17, 21, 25, B); EXPECT_ROW1_EQ(10, 14, 18, 22, C); EXPECT_ROW2_EQ(11, 15, 19, 23, C); EXPECT_ROW3_EQ(12, 16, 20, 24, C); EXPECT_ROW4_EQ(13, 17, 21, 25, C); } TEST(WebTransformationMatrixTest, verifyEqualsBooleanOperator) { WebTransformationMatrix A; initializeTestMatrix(A); WebTransformationMatrix B; initializeTestMatrix(B); EXPECT_TRUE(A == B); // Modifying multiple elements should cause equals operator to return false. WebTransformationMatrix C; initializeTestMatrix2(C); EXPECT_FALSE(A == C); // Modifying any one individual element should cause equals operator to return false. WebTransformationMatrix D; D = A; D.setM11(0); EXPECT_FALSE(A == D); D = A; D.setM12(0); EXPECT_FALSE(A == D); D = A; D.setM13(0); EXPECT_FALSE(A == D); D = A; D.setM14(0); EXPECT_FALSE(A == D); D = A; D.setM21(0); EXPECT_FALSE(A == D); D = A; D.setM22(0); EXPECT_FALSE(A == D); D = A; D.setM23(0); EXPECT_FALSE(A == D); D = A; D.setM24(0); EXPECT_FALSE(A == D); D = A; D.setM31(0); EXPECT_FALSE(A == D); D = A; D.setM32(0); EXPECT_FALSE(A == D); D = A; D.setM33(0); EXPECT_FALSE(A == D); D = A; D.setM34(0); EXPECT_FALSE(A == D); D = A; D.setM41(0); EXPECT_FALSE(A == D); D = A; D.setM42(0); EXPECT_FALSE(A == D); D = A; D.setM43(0); EXPECT_FALSE(A == D); D = A; D.setM44(0); EXPECT_FALSE(A == D); } TEST(WebTransformationMatrixTest, verifyMultiplyOperator) { WebTransformationMatrix A; initializeTestMatrix(A); WebTransformationMatrix B; initializeTestMatrix2(B); WebTransformationMatrix C = A * B; EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, C); EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, C); EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, C); EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, C); // Just an additional sanity check; matrix multiplication is not commutative. EXPECT_FALSE(A * B == B * A); } TEST(WebTransformationMatrixTest, verifyMatrixMultiplication) { WebTransformationMatrix A; initializeTestMatrix(A); WebTransformationMatrix B; initializeTestMatrix2(B); A.multiply(B); EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); } TEST(WebTransformationMatrixTest, verifyMakeIdentiy) { WebTransformationMatrix A; initializeTestMatrix(A); A.makeIdentity(); EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); EXPECT_TRUE(A.isIdentity()); } TEST(WebTransformationMatrixTest, verifyTranslate) { WebTransformationMatrix A; A.translate(2, 3); EXPECT_ROW1_EQ(1, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 1, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that translate() post-multiplies the existing matrix. A.makeIdentity(); A.scale(5); A.translate(2, 3); EXPECT_ROW1_EQ(5, 0, 0, 10, A); EXPECT_ROW2_EQ(0, 5, 0, 15, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyTranslate3d) { WebTransformationMatrix A; A.translate3d(2, 3, 4); EXPECT_ROW1_EQ(1, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 1, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 1, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that translate3d() post-multiplies the existing matrix. A.makeIdentity(); A.scale3d(6, 7, 8); A.translate3d(2, 3, 4); EXPECT_ROW1_EQ(6, 0, 0, 12, A); EXPECT_ROW2_EQ(0, 7, 0, 21, A); EXPECT_ROW3_EQ(0, 0, 8, 32, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyTranslateRight3d) { WebTransformationMatrix A; A.translateRight3d(2, 3, 4); EXPECT_ROW1_EQ(1, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 1, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 1, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Note carefully, all other operations do post-multiply, this one is unique. // Verify that translateRight3d() PRE-multiplies the existing matrix. A.makeIdentity(); A.scale3d(6, 7, 8); A.translateRight3d(2, 3, 4); EXPECT_ROW1_EQ(6, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 7, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 8, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyScale) { WebTransformationMatrix A; A.scale(5); EXPECT_ROW1_EQ(5, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 5, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that scale() post-multiplies the existing matrix. A.makeIdentity(); A.translate3d(2, 3, 4); A.scale(5); EXPECT_ROW1_EQ(5, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 5, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 1, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyNonUniformScale) { WebTransformationMatrix A; A.scaleNonUniform(6, 7); EXPECT_ROW1_EQ(6, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 7, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that scaleNonUniform() post-multiplies the existing matrix. A.makeIdentity(); A.translate3d(2, 3, 4); A.scaleNonUniform(6, 7); EXPECT_ROW1_EQ(6, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 7, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 1, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyScale3d) { WebTransformationMatrix A; A.scale3d(6, 7, 8); EXPECT_ROW1_EQ(6, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 7, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that scale3d() post-multiplies the existing matrix. A.makeIdentity(); A.translate3d(2, 3, 4); A.scale3d(6, 7, 8); EXPECT_ROW1_EQ(6, 0, 0, 2, A); EXPECT_ROW2_EQ(0, 7, 0, 3, A); EXPECT_ROW3_EQ(0, 0, 8, 4, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotate) { WebTransformationMatrix A; A.rotate(90); EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that rotate() post-multiplies the existing matrix. A.makeIdentity(); A.scale3d(6, 7, 8); A.rotate(90); EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotate3d) { WebTransformationMatrix A; // Check rotation about z-axis A.makeIdentity(); A.rotate3d(0, 0, 90); EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Check rotation about x-axis A.makeIdentity(); A.rotate3d(90, 0, 0); EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Check rotation about y-axis. // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. A.makeIdentity(); A.rotate3d(0, 90, 0); EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. A.makeIdentity(); A.scale3d(6, 7, 8); A.rotate3d(0, 0, 90); EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotate3dOrderOfCompositeRotations) { // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform consiting of // three primitive rotations. This test verifies that the ordering of those three // transforms is the intended ordering. // // The correct ordering for this test case should be: // 1. rotate by 30 degrees about z-axis // 2. rotate by 20 degrees about y-axis // 3. rotate by 10 degrees about x-axis // // Note: there are 6 possible orderings of 3 transforms. For the specific transforms // used in this test, all 6 combinations produce a unique matrix that is different // from the other orderings. That way, this test verifies the exact ordering. WebTransformationMatrix A; A.makeIdentity(); A.rotate3d(10, 20, 30); EXPECT_ROW1_NEAR(0.8137976813493738026394908, -0.4409696105298823720630708, 0.3785223063697923939763257, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.4698463103929541584413698, 0.8825641192593856043657752, 0.0180283112362972230968694, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-0.3420201433256686573969318, 0.1631759111665348205288950, 0.9254165783983233639631294, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3d) { WebTransformationMatrix A; // Check rotation about z-axis A.makeIdentity(); A.rotate3d(0, 0, 1, 90); EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Check rotation about x-axis A.makeIdentity(); A.rotate3d(1, 0, 0, 90); EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Check rotation about y-axis. // Note carefully, the expected pattern is inverted compared to rotating about x axis or z axis. A.makeIdentity(); A.rotate3d(0, 1, 0, 90); EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. A.makeIdentity(); A.scale3d(6, 7, 8); A.rotate3d(0, 0, 1, 90); EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForArbitraryAxis) { // Check rotation about an arbitrary non-axis-aligned vector. WebTransformationMatrix A; A.rotate3d(1, 1, 1, 90); EXPECT_ROW1_NEAR(0.3333333333333334258519187, -0.2440169358562924717404030, 0.9106836025229592124219380, 0, A, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.9106836025229592124219380, 0.3333333333333334258519187, -0.2440169358562924717404030, 0, A, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-0.2440169358562924717404030, 0.9106836025229592124219380, 0.3333333333333334258519187, 0, A, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyRotateAxisAngle3dForDegenerateAxis) { // Check rotation about a degenerate zero vector. // It is expected to skip applying the rotation. WebTransformationMatrix A; A.rotate3d(0, 0, 0, 45); // Verify that A remains unchanged. EXPECT_TRUE(A.isIdentity()); initializeTestMatrix(A); A.rotate3d(0, 0, 0, 35); // Verify that A remains unchanged. EXPECT_ROW1_EQ(10, 14, 18, 22, A); EXPECT_ROW2_EQ(11, 15, 19, 23, A); EXPECT_ROW3_EQ(12, 16, 20, 24, A); EXPECT_ROW4_EQ(13, 17, 21, 25, A); } TEST(WebTransformationMatrixTest, verifySkewX) { WebTransformationMatrix A; A.skewX(45); EXPECT_ROW1_EQ(1, 1, 0, 0, A); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that skewX() post-multiplies the existing matrix. // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-multiplied instead of post-multiplied. A.makeIdentity(); A.scale3d(6, 7, 8); A.skewX(45); EXPECT_ROW1_EQ(6, 6, 0, 0, A); EXPECT_ROW2_EQ(0, 7, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifySkewY) { WebTransformationMatrix A; A.skewY(45); EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_EQ(1, 1, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); // Verify that skewY() post-multiplies the existing matrix. // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-multiplied instead of post-multiplied. A.makeIdentity(); A.scale3d(6, 7, 8); A.skewY(45); EXPECT_ROW1_EQ(6, 0, 0, 0, A); EXPECT_ROW2_EQ(7, 7, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 8, 0, A); EXPECT_ROW4_EQ(0, 0, 0, 1, A); } TEST(WebTransformationMatrixTest, verifyApplyPerspective) { WebTransformationMatrix A; A.applyPerspective(1); EXPECT_ROW1_EQ(1, 0, 0, 0, A); EXPECT_ROW2_EQ(0, 1, 0, 0, A); EXPECT_ROW3_EQ(0, 0, 1, 0, A); EXPECT_ROW4_EQ(0, 0, -1, 1, A); // Verify that applyPerspective() post-multiplies the existing matrix. A.makeIdentity(); A.translate3d(2, 3, 4); A.applyPerspective(1); EXPECT_ROW1_EQ(1, 0, -2, 2, A); EXPECT_ROW2_EQ(0, 1, -3, 3, A); EXPECT_ROW3_EQ(0, 0, -3, 4, A); EXPECT_ROW4_EQ(0, 0, -1, 1, A); } TEST(WebTransformationMatrixTest, verifyHasPerspective) { WebTransformationMatrix A; A.applyPerspective(1); EXPECT_TRUE(A.hasPerspective()); A.makeIdentity(); A.applyPerspective(0); EXPECT_FALSE(A.hasPerspective()); A.makeIdentity(); A.setM34(-0.3); EXPECT_TRUE(A.hasPerspective()); // FIXME: WebCore only checkes m34() for perspective, but that is probably // wrong. https://bugs.webkit.org/show_bug.cgi?id=83088. For now, this test // case expects the exact behavior as implemented by WebCore, but this should // probably be changed so that if the entire bottom row is not exactly // (0, 0, 0, 1), then hasPerspective should return true. A.makeIdentity(); A.setM14(-1); EXPECT_FALSE(A.hasPerspective()); A.makeIdentity(); A.setM24(-1); EXPECT_FALSE(A.hasPerspective()); A.makeIdentity(); A.setM44(0.5); EXPECT_FALSE(A.hasPerspective()); } TEST(WebTransformationMatrixTest, verifyIsInvertible) { WebTransformationMatrix A; // Translations, rotations, scales, skews and arbitrary combinations of them are invertible. A.makeIdentity(); EXPECT_TRUE(A.isInvertible()); A.makeIdentity(); A.translate3d(2, 3, 4); EXPECT_TRUE(A.isInvertible()); A.makeIdentity(); A.scale3d(6, 7, 8); EXPECT_TRUE(A.isInvertible()); A.makeIdentity(); A.rotate3d(10, 20, 30); EXPECT_TRUE(A.isInvertible()); A.makeIdentity(); A.skewX(45); EXPECT_TRUE(A.isInvertible()); // A perspective matrix (projection plane at z=0) is invertible. The intuitive // explanation is that perspective is eqivalent to a skew of the w-axis; skews are // invertible. A.makeIdentity(); A.applyPerspective(1); EXPECT_TRUE(A.isInvertible()); // A "pure" perspective matrix derived by similar triangles, with m44() set to zero // (i.e. camera positioned at the origin), is not invertible. A.makeIdentity(); A.applyPerspective(1); A.setM44(0); EXPECT_FALSE(A.isInvertible()); // Adding more to a non-invertible matrix will not make it invertible in the general case. A.makeIdentity(); A.applyPerspective(1); A.setM44(0); A.scale3d(6, 7, 8); A.rotate3d(10, 20, 30); A.translate3d(6, 7, 8); EXPECT_FALSE(A.isInvertible()); // A degenerate matrix of all zeros is not invertible. A.makeIdentity(); A.setM11(0); A.setM22(0); A.setM33(0); A.setM44(0); EXPECT_FALSE(A.isInvertible()); } TEST(WebTransformationMatrixTest, verifyIsIdentity) { WebTransformationMatrix A; initializeTestMatrix(A); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); EXPECT_TRUE(A.isIdentity()); // Modifying any one individual element should cause the matrix to no longer be identity. A.makeIdentity(); A.setM11(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM12(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM13(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM14(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM21(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM22(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM23(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM24(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM31(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM32(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM33(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM34(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM41(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM42(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM43(2); EXPECT_FALSE(A.isIdentity()); A.makeIdentity(); A.setM44(2); EXPECT_FALSE(A.isIdentity()); } TEST(WebTransformationMatrixTest, verifyIsIdentityOrTranslation) { WebTransformationMatrix A; initializeTestMatrix(A); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); EXPECT_TRUE(A.isIdentityOrTranslation()); // Modifying any non-translation components should cause isIdentityOrTranslation() to // return false. NOTE: m41(), m42(), and m43() are the translation components, so // modifying them should still return true for isIdentityOrTranslation(). A.makeIdentity(); A.setM11(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM12(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM13(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM14(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM21(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM22(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM23(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM24(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM31(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM32(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM33(2); EXPECT_FALSE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM34(2); EXPECT_FALSE(A.isIdentityOrTranslation()); // Note carefully - expecting true here. A.makeIdentity(); A.setM41(2); EXPECT_TRUE(A.isIdentityOrTranslation()); // Note carefully - expecting true here. A.makeIdentity(); A.setM42(2); EXPECT_TRUE(A.isIdentityOrTranslation()); // Note carefully - expecting true here. A.makeIdentity(); A.setM43(2); EXPECT_TRUE(A.isIdentityOrTranslation()); A.makeIdentity(); A.setM44(2); EXPECT_FALSE(A.isIdentityOrTranslation()); } TEST(WebTransformationMatrixTest, verifyIsIntegerTranslation) { WebTransformationMatrix A; A.makeIdentity(); A.translate(2, 3); EXPECT_TRUE(A.isIntegerTranslation()); A.makeIdentity(); A.translate(2, 3); EXPECT_TRUE(A.isIntegerTranslation()); A.makeIdentity(); A.translate(2.00001, 3); EXPECT_FALSE(A.isIntegerTranslation()); A.makeIdentity(); A.translate(2, 2.99999); EXPECT_FALSE(A.isIntegerTranslation()); // Stacking many integer translations should ideally not accumulate any precision error. A.makeIdentity(); for (int i = 0; i < 100000; ++i) A.translate(2, 3); EXPECT_TRUE(A.isIntegerTranslation()); } TEST(WebTransformationMatrixTest, verifyBlendForTranslation) { WebTransformationMatrix from; from.translate3d(100, 200, 100); WebTransformationMatrix to; to.makeIdentity(); to.translate3d(200, 100, 300); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); to.makeIdentity(); to.translate3d(200, 100, 300); to.blend(from, 0.25); EXPECT_ROW1_EQ(1, 0, 0, 125, to); EXPECT_ROW2_EQ(0, 1, 0, 175, to); EXPECT_ROW3_EQ(0, 0, 1, 150, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.translate3d(200, 100, 300); to.blend(from, 0.5); EXPECT_ROW1_EQ(1, 0, 0, 150, to); EXPECT_ROW2_EQ(0, 1, 0, 150, to); EXPECT_ROW3_EQ(0, 0, 1, 200, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.translate3d(200, 100, 300); to.blend(from, 1); EXPECT_ROW1_EQ(1, 0, 0, 200, to); EXPECT_ROW2_EQ(0, 1, 0, 100, to); EXPECT_ROW3_EQ(0, 0, 1, 300, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForScale) { WebTransformationMatrix from; from.scale3d(100, 200, 100); WebTransformationMatrix to; to.makeIdentity(); to.scale3d(200, 100, 300); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); to.makeIdentity(); to.scale3d(200, 100, 300); to.blend(from, 0.25); EXPECT_ROW1_EQ(125, 0, 0, 0, to); EXPECT_ROW2_EQ(0, 175, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 150, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.scale3d(200, 100, 300); to.blend(from, 0.5); EXPECT_ROW1_EQ(150, 0, 0, 0, to); EXPECT_ROW2_EQ(0, 150, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 200, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.scale3d(200, 100, 300); to.blend(from, 1); EXPECT_ROW1_EQ(200, 0, 0, 0, to); EXPECT_ROW2_EQ(0, 100, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 300, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForSkewX) { WebTransformationMatrix from; from.skewX(0); WebTransformationMatrix to; to.makeIdentity(); to.skewX(45); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); to.makeIdentity(); to.skewX(45); to.blend(from, 0.5); EXPECT_ROW1_EQ(1, 0.5, 0, 0, to); EXPECT_ROW2_EQ(0, 1, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.skewX(45); to.blend(from, 0.25); EXPECT_ROW1_EQ(1, 0.25, 0, 0, to); EXPECT_ROW2_EQ(0, 1, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.skewX(45); to.blend(from, 1); EXPECT_ROW1_EQ(1, 1, 0, 0, to); EXPECT_ROW2_EQ(0, 1, 0, 0, to); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForSkewY) { // NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix is // inherently underconstrained, and so it does not always compute the originally // intended skew parameters. The current implementation uses QR decomposition, which // decomposes the shear into a rotation + non-uniform scale. // // It is unlikely that the decomposition implementation will need to change very // often, so to get any test coverage, the compromise is to verify the exact matrix // that the blend() operation produces. // // This problem also potentially exists for skewX, but the current QR decomposition // implementation just happens to decompose those test matrices intuitively. WebTransformationMatrix from; from.skewY(0); WebTransformationMatrix to; to.makeIdentity(); to.skewY(45); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); to.makeIdentity(); to.skewY(45); to.blend(from, 0.25); EXPECT_ROW1_NEAR(1.0823489449280947471976333, 0.0464370719145053845178239, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.2152925909665224513123150, 0.9541702441750861130032035, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.skewY(45); to.blend(from, 0.5); EXPECT_ROW1_NEAR(1.1152212925809066312865525, 0.0676495144007326631996335, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0.4619397844342648662419037, 0.9519009045724774464858342, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); // Unfortunately, this case suffers from uncomfortably large precision error. to.makeIdentity(); to.skewY(45); to.blend(from, 1); EXPECT_ROW1_NEAR(1, 0, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1, 1, 0, 0, to, LOOSE_ERROR_THRESHOLD); EXPECT_ROW3_EQ(0, 0, 1, 0, to); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutX) { // Even though blending uses quaternions, axis-aligned rotations should blend the same // with quaternions or Euler angles. So we can test rotation blending by comparing // against manually specified matrices from Euler angles. WebTransformationMatrix from; from.rotate3d(1, 0, 0, 0); WebTransformationMatrix to; to.makeIdentity(); to.rotate3d(1, 0, 0, 90); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(1, 0, 0, 90); to.blend(from, 0.25); EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); expectedRotationAngle = 45 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(1, 0, 0, 90); to.blend(from, 0.5); EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, sin(expectedRotationAngle), cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.rotate3d(1, 0, 0, 90); to.blend(from, 1); EXPECT_ROW1_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, 0, -1, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutY) { WebTransformationMatrix from; from.rotate3d(0, 1, 0, 0); WebTransformationMatrix to; to.makeIdentity(); to.rotate3d(0, 1, 0, 90); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(0, 1, 0, 90); to.blend(from, 0.25); EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); expectedRotationAngle = 45 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(0, 1, 0, 90); to.blend(from, 0.5); EXPECT_ROW1_NEAR(cos(expectedRotationAngle), 0, sin(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-sin(expectedRotationAngle), 0, cos(expectedRotationAngle), 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.rotate3d(0, 1, 0, 90); to.blend(from, 1); EXPECT_ROW1_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(0, 1, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(-1, 0, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForRotationAboutZ) { WebTransformationMatrix from; from.rotate3d(0, 0, 1, 0); WebTransformationMatrix to; to.makeIdentity(); to.rotate3d(0, 0, 1, 90); to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); double expectedRotationAngle = 22.5 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(0, 0, 1, 90); to.blend(from, 0.25); EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); expectedRotationAngle = 45 * M_PI / 180.0; to.makeIdentity(); to.rotate3d(0, 0, 1, 90); to.blend(from, 0.5); EXPECT_ROW1_NEAR(cos(expectedRotationAngle), -sin(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(sin(expectedRotationAngle), cos(expectedRotationAngle), 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); to.makeIdentity(); to.rotate3d(0, 0, 1, 90); to.blend(from, 1); EXPECT_ROW1_NEAR(0, -1, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW2_NEAR(1, 0, 0, 0, to, ERROR_THRESHOLD); EXPECT_ROW3_NEAR(0, 0, 1, 0, to, ERROR_THRESHOLD); EXPECT_ROW4_EQ(0, 0, 0, 1, to); } TEST(WebTransformationMatrixTest, verifyBlendForCompositeTransform) { // Verify that the blending was done with a decomposition in correct order by blending // a composite transform. // Using matrix x vector notation (Ax = b, where x is column vector), the ordering should be: // perspective * translation * rotation * skew * scale // // It is not as important (or meaningful) to check intermediate interpolations; order // of operations will be tested well enough by the end cases that are easier to // specify. WebTransformationMatrix from; WebTransformationMatrix to; WebTransformationMatrix expectedEndOfAnimation; expectedEndOfAnimation.applyPerspective(1); expectedEndOfAnimation.translate3d(10, 20, 30); expectedEndOfAnimation.rotate3d(0, 0, 1, 25); expectedEndOfAnimation.skewY(45); expectedEndOfAnimation.scale3d(6, 7, 8); to = expectedEndOfAnimation; to.blend(from, 0); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(from, to); to = expectedEndOfAnimation; to.blend(from, 1); // Recomposing the matrix results in a normalized matrix, so to verify we need to // normalize the expectedEndOfAnimation before comparing elements. Normalizing means // dividing everything by expectedEndOfAnimation.m44(). WebTransformationMatrix normalizedExpectedEndOfAnimation = expectedEndOfAnimation; WebTransformationMatrix normalizationMatrix; normalizationMatrix.setM11(1 / expectedEndOfAnimation.m44()); normalizationMatrix.setM22(1 / expectedEndOfAnimation.m44()); normalizationMatrix.setM33(1 / expectedEndOfAnimation.m44()); normalizationMatrix.setM44(1 / expectedEndOfAnimation.m44()); normalizedExpectedEndOfAnimation.multiply(normalizationMatrix); EXPECT_WEB_TRANSFORMATION_MATRIX_EQ(normalizedExpectedEndOfAnimation, to); } } // namespace