// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "webkit/media/skcanvas_video_renderer.h" #include "base/logging.h" #include "media/base/video_frame.h" #include "media/base/yuv_convert.h" #include "third_party/skia/include/core/SkCanvas.h" #include "third_party/skia/include/core/SkDevice.h" namespace webkit_media { // CanFastPaint is a helper method to determine the conditions for fast // painting. The conditions are: // 1. No skew in canvas matrix. // 2. No flipping nor mirroring. // 3. Canvas has pixel format ARGB8888. // 4. Canvas is opaque. // // TODO(hclam): The fast paint method should support flipping and mirroring. // Disable the flipping and mirroring checks once we have it. static bool CanFastPaint(SkCanvas* canvas, const gfx::Rect& dest_rect) { // Fast paint does not handle opacity value other than 1.0. Hence use slow // paint if opacity is not 1.0. Since alpha = opacity * 0xFF, we check that // alpha != 0xFF. // // Additonal notes: If opacity = 0.0, the chrome display engine does not try // to render the video. So, this method is never called. However, if the // opacity = 0.0001, alpha is again 0, but the display engine tries to render // the video. If we use Fast paint, the video shows up with opacity = 1.0. // Hence we use slow paint also in the case where alpha = 0. It would be ideal // if rendering was never called even for cases where alpha is 0. Created // bug 48090 for this. SkCanvas::LayerIter layer_iter(canvas, false); SkColor sk_color = layer_iter.paint().getColor(); SkAlpha sk_alpha = SkColorGetA(sk_color); if (sk_alpha != 0xFF) { return false; } const SkMatrix& total_matrix = canvas->getTotalMatrix(); // Perform the following checks here: // 1. Check for skewing factors of the transformation matrix. They should be // zero. // 2. Check for mirroring and flipping. Make sure they are greater than zero. if (SkScalarNearlyZero(total_matrix.getSkewX()) && SkScalarNearlyZero(total_matrix.getSkewY()) && total_matrix.getScaleX() > 0 && total_matrix.getScaleY() > 0) { SkDevice* device = canvas->getDevice(); const SkBitmap::Config config = device->config(); if (config == SkBitmap::kARGB_8888_Config && device->isOpaque()) { return true; } } return false; } // Slow paint does a scaled blit from an RGB source. static void SlowPaint( const SkBitmap& bitmap, SkCanvas* canvas, const gfx::Rect& dest_rect) { SkMatrix matrix; matrix.setTranslate(static_cast(dest_rect.x()), static_cast(dest_rect.y())); if (dest_rect.width() != bitmap.width() || dest_rect.height() != bitmap.height()) { matrix.preScale(SkIntToScalar(dest_rect.width()) / SkIntToScalar(bitmap.width()), SkIntToScalar(dest_rect.height()) / SkIntToScalar(bitmap.height())); } SkPaint paint; paint.setFlags(SkPaint::kFilterBitmap_Flag); canvas->drawBitmapMatrix(bitmap, matrix, &paint); } // Fast paint does YUV => RGB, scaling, blitting all in one step into the // canvas. It's not always safe and appropriate to perform fast paint. // CanFastPaint() is used to determine the conditions. static void FastPaint( const scoped_refptr& video_frame, SkCanvas* canvas, const gfx::Rect& dest_rect) { DCHECK(video_frame->format() == media::VideoFrame::YV12 || video_frame->format() == media::VideoFrame::YV16); DCHECK_EQ(video_frame->stride(media::VideoFrame::kUPlane), video_frame->stride(media::VideoFrame::kVPlane)); const SkBitmap& bitmap = canvas->getDevice()->accessBitmap(true); media::YUVType yuv_type = (video_frame->format() == media::VideoFrame::YV12) ? media::YV12 : media::YV16; int y_shift = yuv_type; // 1 for YV12, 0 for YV16. // Create a rectangle backed by SkScalar. SkRect scalar_dest_rect; scalar_dest_rect.iset(dest_rect.x(), dest_rect.y(), dest_rect.right(), dest_rect.bottom()); // Transform the destination rectangle to local coordinates. const SkMatrix& local_matrix = canvas->getTotalMatrix(); SkRect local_dest_rect; local_matrix.mapRect(&local_dest_rect, scalar_dest_rect); // After projecting the destination rectangle to local coordinates, round // the projected rectangle to integer values, this will give us pixel values // of the rectangle. SkIRect local_dest_irect, local_dest_irect_saved; local_dest_rect.round(&local_dest_irect); local_dest_rect.round(&local_dest_irect_saved); // No point painting if the destination rect doesn't intersect with the // clip rect. if (!local_dest_irect.intersect(canvas->getTotalClip().getBounds())) return; // At this point |local_dest_irect| contains the rect that we should draw // to within the clipping rect. // Calculate the address for the top left corner of destination rect in // the canvas that we will draw to. The address is obtained by the base // address of the canvas shifted by "left" and "top" of the rect. uint8* dest_rect_pointer = static_cast(bitmap.getPixels()) + local_dest_irect.fTop * bitmap.rowBytes() + local_dest_irect.fLeft * 4; // Project the clip rect to the original video frame, obtains the // dimensions of the projected clip rect, "left" and "top" of the rect. // The math here are all integer math so we won't have rounding error and // write outside of the canvas. // We have the assumptions of dest_rect.width() and dest_rect.height() // being non-zero, these are valid assumptions since finding intersection // above rejects empty rectangle so we just do a DCHECK here. DCHECK_NE(0, dest_rect.width()); DCHECK_NE(0, dest_rect.height()); size_t frame_clip_width = local_dest_irect.width() * video_frame->width() / local_dest_irect_saved.width(); size_t frame_clip_height = local_dest_irect.height() * video_frame->height() / local_dest_irect_saved.height(); // Project the "left" and "top" of the final destination rect to local // coordinates of the video frame, use these values to find the offsets // in the video frame to start reading. size_t frame_clip_left = (local_dest_irect.fLeft - local_dest_irect_saved.fLeft) * video_frame->width() / local_dest_irect_saved.width(); size_t frame_clip_top = (local_dest_irect.fTop - local_dest_irect_saved.fTop) * video_frame->height() / local_dest_irect_saved.height(); // Use the "left" and "top" of the destination rect to locate the offset // in Y, U and V planes. size_t y_offset = video_frame->stride(media::VideoFrame::kYPlane) * frame_clip_top + frame_clip_left; // For format YV12, there is one U, V value per 2x2 block. // For format YV16, there is one u, V value per 2x1 block. size_t uv_offset = (video_frame->stride(media::VideoFrame::kUPlane) * (frame_clip_top >> y_shift)) + (frame_clip_left >> 1); uint8* frame_clip_y = video_frame->data(media::VideoFrame::kYPlane) + y_offset; uint8* frame_clip_u = video_frame->data(media::VideoFrame::kUPlane) + uv_offset; uint8* frame_clip_v = video_frame->data(media::VideoFrame::kVPlane) + uv_offset; // TODO(hclam): do rotation and mirroring here. // TODO(fbarchard): switch filtering based on performance. bitmap.lockPixels(); media::ScaleYUVToRGB32(frame_clip_y, frame_clip_u, frame_clip_v, dest_rect_pointer, frame_clip_width, frame_clip_height, local_dest_irect.width(), local_dest_irect.height(), video_frame->stride(media::VideoFrame::kYPlane), video_frame->stride(media::VideoFrame::kUPlane), bitmap.rowBytes(), yuv_type, media::ROTATE_0, media::FILTER_BILINEAR); bitmap.unlockPixels(); } // Converts a VideoFrame containing YUV data to a SkBitmap containing RGB data. // // |bitmap| will be (re)allocated to match the dimensions of |video_frame|. static void ConvertVideoFrameToBitmap( const scoped_refptr& video_frame, SkBitmap* bitmap) { DCHECK(video_frame->format() == media::VideoFrame::YV12 || video_frame->format() == media::VideoFrame::YV16); DCHECK(video_frame->stride(media::VideoFrame::kUPlane) == video_frame->stride(media::VideoFrame::kVPlane)); // Check if |bitmap| needs to be (re)allocated. if (bitmap->isNull() || bitmap->width() != static_cast(video_frame->width()) || bitmap->height() != static_cast(video_frame->height())) { bitmap->setConfig(SkBitmap::kARGB_8888_Config, video_frame->width(), video_frame->height()); bitmap->allocPixels(); bitmap->setIsVolatile(true); } bitmap->lockPixels(); media::YUVType yuv_type = (video_frame->format() == media::VideoFrame::YV12) ? media::YV12 : media::YV16; media::ConvertYUVToRGB32(video_frame->data(media::VideoFrame::kYPlane), video_frame->data(media::VideoFrame::kUPlane), video_frame->data(media::VideoFrame::kVPlane), static_cast(bitmap->getPixels()), video_frame->width(), video_frame->height(), video_frame->stride(media::VideoFrame::kYPlane), video_frame->stride(media::VideoFrame::kUPlane), bitmap->rowBytes(), yuv_type); bitmap->notifyPixelsChanged(); bitmap->unlockPixels(); } SkCanvasVideoRenderer::SkCanvasVideoRenderer() : last_frame_timestamp_(media::kNoTimestamp()) { } SkCanvasVideoRenderer::~SkCanvasVideoRenderer() {} void SkCanvasVideoRenderer::Paint(media::VideoFrame* video_frame, SkCanvas* canvas, const gfx::Rect& dest_rect) { // Paint black rectangle if there isn't a frame available. if (!video_frame) { SkPaint paint; paint.setColor(SK_ColorBLACK); canvas->drawRectCoords( static_cast(dest_rect.x()), static_cast(dest_rect.y()), static_cast(dest_rect.right()), static_cast(dest_rect.bottom()), paint); return; } // Scale and convert to RGB in one step if we can. if (CanFastPaint(canvas, dest_rect)) { FastPaint(video_frame, canvas, dest_rect); return; } // Check if we should convert and update |last_frame_|. if (last_frame_.isNull() || video_frame->GetTimestamp() != last_frame_timestamp_) { ConvertVideoFrameToBitmap(video_frame, &last_frame_); last_frame_timestamp_ = video_frame->GetTimestamp(); } // Do a slower paint using |last_frame_|. SlowPaint(last_frame_, canvas, dest_rect); } } // namespace webkit_media