/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2007 David Smith (catfish.man@gmail.com) * Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderBlock.h" #include "Document.h" #include "Element.h" #include "Frame.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLNames.h" #include "HitTestResult.h" #include "InlineTextBox.h" #include "RenderImage.h" #include "RenderTableCell.h" #include "RenderTextFragment.h" #include "RenderTheme.h" #include "RenderView.h" #include "SelectionController.h" #include "TextStream.h" using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { // Number of pixels to allow as a fudge factor when clicking above or below a line. // clicking up to verticalLineClickFudgeFactor pixels above a line will correspond to the closest point on the line. const int verticalLineClickFudgeFactor= 3; using namespace HTMLNames; struct ColumnInfo { ColumnInfo() : m_desiredColumnWidth(0) , m_desiredColumnCount(1) { } int m_desiredColumnWidth; unsigned m_desiredColumnCount; Vector m_columnRects; }; typedef WTF::HashMap ColumnInfoMap; static ColumnInfoMap* gColumnInfoMap = 0; // Our MarginInfo state used when laying out block children. RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int top, int bottom) { // Whether or not we can collapse our own margins with our children. We don't do this // if we had any border/padding (obviously), if we're the root or HTML elements, or if // we're positioned, floating, a table cell. m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() && !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable(); m_canCollapseTopWithChildren = m_canCollapseWithChildren && (top == 0) && block->style()->marginTopCollapse() != MSEPARATE; // If any height other than auto is specified in CSS, then we don't collapse our bottom // margins with our children's margins. To do otherwise would be to risk odd visual // effects when the children overflow out of the parent block and yet still collapse // with it. We also don't collapse if we have any bottom border/padding. m_canCollapseBottomWithChildren = m_canCollapseWithChildren && (bottom == 0) && (block->style()->height().isAuto() && block->style()->height().value() == 0) && block->style()->marginBottomCollapse() != MSEPARATE; m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginTopCollapse() == MDISCARD || block->style()->marginBottomCollapse() == MDISCARD; m_atTopOfBlock = true; m_atBottomOfBlock = false; m_posMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(true) : 0; m_negMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(false) : 0; m_selfCollapsingBlockClearedFloat = false; m_topQuirk = m_bottomQuirk = m_determinedTopQuirk = false; } // ------------------------------------------------------------------------------------------------------- RenderBlock::RenderBlock(Node* node) : RenderFlow(node) , m_floatingObjects(0) , m_positionedObjects(0) , m_maxMargin(0) , m_overflowHeight(0) , m_overflowWidth(0) , m_overflowLeft(0) , m_overflowTop(0) { } RenderBlock::~RenderBlock() { delete m_floatingObjects; delete m_positionedObjects; delete m_maxMargin; if (m_hasColumns) delete gColumnInfoMap->take(this); } void RenderBlock::setStyle(RenderStyle* _style) { setReplaced(_style->isDisplayReplacedType()); RenderFlow::setStyle(_style); // FIXME: We could save this call when the change only affected non-inherited properties for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isAnonymousBlock()) { RenderStyle* newStyle = new (renderArena()) RenderStyle(); newStyle->inheritFrom(style()); newStyle->setDisplay(BLOCK); child->setStyle(newStyle); } } m_lineHeight = -1; // Update pseudos for :before and :after now. if (!isAnonymous() && canHaveChildren()) { updateBeforeAfterContent(RenderStyle::BEFORE); updateBeforeAfterContent(RenderStyle::AFTER); } updateFirstLetter(); } void RenderBlock::addChildToFlow(RenderObject* newChild, RenderObject* beforeChild) { // Make sure we don't append things after :after-generated content if we have it. if (!beforeChild && isAfterContent(lastChild())) beforeChild = lastChild(); bool madeBoxesNonInline = false; // If the requested beforeChild is not one of our children, then this is most likely because // there is an anonymous block box within this object that contains the beforeChild. So // just insert the child into the anonymous block box instead of here. if (beforeChild && beforeChild->parent() != this) { ASSERT(beforeChild->parent()); ASSERT(beforeChild->parent()->isAnonymousBlock()); if (newChild->isInline()) { beforeChild->parent()->addChild(newChild,beforeChild); return; } else if (beforeChild->parent()->firstChild() != beforeChild) return beforeChild->parent()->addChild(newChild, beforeChild); else return addChildToFlow(newChild, beforeChild->parent()); } // A block has to either have all of its children inline, or all of its children as blocks. // So, if our children are currently inline and a block child has to be inserted, we move all our // inline children into anonymous block boxes if ( m_childrenInline && !newChild->isInline() && !newChild->isFloatingOrPositioned() ) { // This is a block with inline content. Wrap the inline content in anonymous blocks. makeChildrenNonInline(beforeChild); madeBoxesNonInline = true; if (beforeChild && beforeChild->parent() != this) { beforeChild = beforeChild->parent(); ASSERT(beforeChild->isAnonymousBlock()); ASSERT(beforeChild->parent() == this); } } else if (!m_childrenInline && !newChild->isFloatingOrPositioned()) { // If we're inserting an inline child but all of our children are blocks, then we have to make sure // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise // a new one is created and inserted into our list of children in the appropriate position. if (newChild->isInline()) { if (beforeChild) { if (beforeChild->previousSibling() && beforeChild->previousSibling()->isAnonymousBlock()) { beforeChild->previousSibling()->addChild(newChild); return; } } else { if (lastChild() && lastChild()->isAnonymousBlock()) { lastChild()->addChild(newChild); return; } } // no suitable existing anonymous box - create a new one RenderBlock* newBox = createAnonymousBlock(); RenderContainer::addChild(newBox,beforeChild); newBox->addChild(newChild); return; } } RenderContainer::addChild(newChild,beforeChild); // ### care about aligned stuff if (madeBoxesNonInline && parent() && isAnonymousBlock()) parent()->removeLeftoverAnonymousBlock(this); // this object may be dead here } static void getInlineRun(RenderObject* start, RenderObject* boundary, RenderObject*& inlineRunStart, RenderObject*& inlineRunEnd) { // Beginning at |start| we find the largest contiguous run of inlines that // we can. We denote the run with start and end points, |inlineRunStart| // and |inlineRunEnd|. Note that these two values may be the same if // we encounter only one inline. // // We skip any non-inlines we encounter as long as we haven't found any // inlines yet. // // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered // a non-inline. // Start by skipping as many non-inlines as we can. RenderObject * curr = start; bool sawInline; do { while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) curr = curr->nextSibling(); inlineRunStart = inlineRunEnd = curr; if (!curr) return; // No more inline children to be found. sawInline = curr->isInline(); curr = curr->nextSibling(); while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { inlineRunEnd = curr; if (curr->isInline()) sawInline = true; curr = curr->nextSibling(); } } while (!sawInline); } void RenderBlock::deleteLineBoxTree() { InlineFlowBox* line = m_firstLineBox; InlineFlowBox* nextLine; while (line) { nextLine = line->nextFlowBox(); line->deleteLine(renderArena()); line = nextLine; } m_firstLineBox = m_lastLineBox = 0; } void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) { // makeChildrenNonInline takes a block whose children are *all* inline and it // makes sure that inline children are coalesced under anonymous // blocks. If |insertionPoint| is defined, then it represents the insertion point for // the new block child that is causing us to have to wrap all the inlines. This // means that we cannot coalesce inlines before |insertionPoint| with inlines following // |insertionPoint|, because the new child is going to be inserted in between the inlines, // splitting them. ASSERT(isInlineBlockOrInlineTable() || !isInline()); ASSERT(!insertionPoint || insertionPoint->parent() == this); m_childrenInline = false; RenderObject *child = firstChild(); if (!child) return; deleteLineBoxTree(); while (child) { RenderObject *inlineRunStart, *inlineRunEnd; getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); if (!inlineRunStart) break; child = inlineRunEnd->nextSibling(); RenderBlock* box = createAnonymousBlock(); insertChildNode(box, inlineRunStart); RenderObject* o = inlineRunStart; while(o != inlineRunEnd) { RenderObject* no = o; o = no->nextSibling(); box->moveChildNode(no); } box->moveChildNode(inlineRunEnd); } #ifndef NDEBUG for (RenderObject *c = firstChild(); c; c = c->nextSibling()) ASSERT(!c->isInline()); #endif repaint(); } void RenderBlock::removeChild(RenderObject *oldChild) { // If this child is a block, and if our previous and next siblings are // both anonymous blocks with inline content, then we can go ahead and // fold the inline content back together. RenderObject* prev = oldChild->previousSibling(); RenderObject* next = oldChild->nextSibling(); bool canDeleteAnonymousBlocks = !documentBeingDestroyed() && !isInline() && !oldChild->isInline() && !oldChild->continuation() && (!prev || (prev->isAnonymousBlock() && prev->childrenInline())) && (!next || (next->isAnonymousBlock() && next->childrenInline())); if (canDeleteAnonymousBlocks && prev && next) { // Take all the children out of the |next| block and put them in // the |prev| block. prev->setNeedsLayoutAndPrefWidthsRecalc(); RenderObject* o = next->firstChild(); while (o) { RenderObject* no = o; o = no->nextSibling(); prev->moveChildNode(no); } RenderBlock* nextBlock = static_cast(next); nextBlock->deleteLineBoxTree(); // Nuke the now-empty block. next->destroy(); } RenderFlow::removeChild(oldChild); RenderObject* child = prev ? prev : next; if (canDeleteAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) { // The removal has knocked us down to containing only a single anonymous // box. We can go ahead and pull the content right back up into our // box. setNeedsLayoutAndPrefWidthsRecalc(); RenderBlock* anonBlock = static_cast(removeChildNode(child, false)); m_childrenInline = true; RenderObject* o = anonBlock->firstChild(); while (o) { RenderObject* no = o; o = no->nextSibling(); moveChildNode(no); } // Delete the now-empty block's lines and nuke it. anonBlock->deleteLineBoxTree(); anonBlock->destroy(); } } int RenderBlock::overflowHeight(bool includeInterior) const { if (!includeInterior && hasOverflowClip()) { if (ShadowData* boxShadow = style()->boxShadow()) return m_height + max(boxShadow->y + boxShadow->blur, 0); return m_height; } return m_overflowHeight; } int RenderBlock::overflowWidth(bool includeInterior) const { if (!includeInterior && hasOverflowClip()) { if (ShadowData* boxShadow = style()->boxShadow()) return m_width + max(boxShadow->x + boxShadow->blur, 0); return m_width; } return m_overflowWidth; } int RenderBlock::overflowLeft(bool includeInterior) const { if (!includeInterior && hasOverflowClip()) { if (ShadowData* boxShadow = style()->boxShadow()) return min(boxShadow->x - boxShadow->blur, 0); return 0; } return m_overflowLeft; } int RenderBlock::overflowTop(bool includeInterior) const { if (!includeInterior && hasOverflowClip()) { if (ShadowData* boxShadow = style()->boxShadow()) return min(boxShadow->y - boxShadow->blur, 0); return 0; } return m_overflowTop; } IntRect RenderBlock::overflowRect(bool includeInterior) const { if (!includeInterior && hasOverflowClip()) { IntRect box = borderBox(); if (ShadowData* boxShadow = style()->boxShadow()) { int shadowLeft = min(boxShadow->x - boxShadow->blur, 0); int shadowRight = max(boxShadow->x + boxShadow->blur, 0); int shadowTop = min(boxShadow->y - boxShadow->blur, 0); int shadowBottom = max(boxShadow->y + boxShadow->blur, 0); box.move(shadowLeft, shadowTop); box.setWidth(box.width() - shadowLeft + shadowRight); box.setHeight(box.height() - shadowTop + shadowBottom); } return box; } if (!includeInterior && hasOverflowClip()) return borderBox(); int l = overflowLeft(includeInterior); int t = min(overflowTop(includeInterior), -borderTopExtra()); return IntRect(l, t, overflowWidth(includeInterior) - l, max(overflowHeight(includeInterior), height() + borderBottomExtra()) - t); } bool RenderBlock::isSelfCollapsingBlock() const { // We are not self-collapsing if we // (a) have a non-zero height according to layout (an optimization to avoid wasting time) // (b) are a table, // (c) have border/padding, // (d) have a min-height // (e) have specified that one of our margins can't collapse using a CSS extension if (m_height > 0 || isTable() || (borderBottom() + paddingBottom() + borderTop() + paddingTop()) != 0 || style()->minHeight().isPositive() || style()->marginTopCollapse() == MSEPARATE || style()->marginBottomCollapse() == MSEPARATE) return false; bool hasAutoHeight = style()->height().isAuto(); if (style()->height().isPercent() && !style()->htmlHacks()) { hasAutoHeight = true; for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { if (cb->style()->height().isFixed() || cb->isTableCell()) hasAutoHeight = false; } } // If the height is 0 or auto, then whether or not we are a self-collapsing block depends // on whether we have content that is all self-collapsing or not. if (hasAutoHeight || ((style()->height().isFixed() || style()->height().isPercent()) && style()->height().isZero())) { // If the block has inline children, see if we generated any line boxes. If we have any // line boxes, then we can't be self-collapsing, since we have content. if (childrenInline()) return !firstLineBox(); // Whether or not we collapse is dependent on whether all our normal flow children // are also self-collapsing. for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isFloatingOrPositioned()) continue; if (!child->isSelfCollapsingBlock()) return false; } return true; } return false; } void RenderBlock::layout() { // Update our first letter info now. updateFirstLetter(); // Table cells call layoutBlock directly, so don't add any logic here. Put code into // layoutBlock(). layoutBlock(false); // It's safe to check for control clip here, since controls can never be table cells. if (hasControlClip()) { // Because of the lightweight clip, there can never be any overflow from children. m_overflowWidth = m_width; m_overflowHeight = m_height; m_overflowLeft = 0; m_overflowTop = 0; } } void RenderBlock::layoutBlock(bool relayoutChildren) { ASSERT(needsLayout()); if (isInline() && !isInlineBlockOrInlineTable()) // Inline
s inside various table elements can return; // cause us to come in here. Just bail. if (!relayoutChildren && layoutOnlyPositionedObjects()) return; IntRect oldBounds; IntRect oldOutlineBox; bool checkForRepaint = checkForRepaintDuringLayout(); if (checkForRepaint) { oldBounds = absoluteClippedOverflowRect(); oldOutlineBox = absoluteOutlineBox(); } bool hadColumns = m_hasColumns; if (!hadColumns) view()->pushLayoutState(this, IntSize(xPos(), yPos())); else view()->disableLayoutState(); int oldWidth = m_width; int oldColumnWidth = desiredColumnWidth(); calcWidth(); calcColumnWidth(); m_overflowWidth = m_width; m_overflowLeft = 0; if (oldWidth != m_width || oldColumnWidth != desiredColumnWidth()) relayoutChildren = true; clearFloats(); int previousHeight = m_height; m_height = 0; m_overflowHeight = 0; m_clearStatus = CNONE; // We use four values, maxTopPos, maxPosNeg, maxBottomPos, and maxBottomNeg, to track // our current maximal positive and negative margins. These values are used when we // are collapsed with adjacent blocks, so for example, if you have block A and B // collapsing together, then you'd take the maximal positive margin from both A and B // and subtract it from the maximal negative margin from both A and B to get the // true collapsed margin. This algorithm is recursive, so when we finish layout() // our block knows its current maximal positive/negative values. // // Start out by setting our margin values to our current margins. Table cells have // no margins, so we don't fill in the values for table cells. bool isCell = isTableCell(); if (!isCell) { initMaxMarginValues(); m_topMarginQuirk = style()->marginTop().quirk(); m_bottomMarginQuirk = style()->marginBottom().quirk(); if (element() && element()->hasTagName(formTag) && element()->isMalformed()) // See if this form is malformed (i.e., unclosed). If so, don't give the form // a bottom margin. setMaxBottomMargins(0, 0); } // For overflow:scroll blocks, ensure we have both scrollbars in place always. if (scrollsOverflow()) { if (style()->overflowX() == OSCROLL) m_layer->setHasHorizontalScrollbar(true); if (style()->overflowY() == OSCROLL) m_layer->setHasVerticalScrollbar(true); } int repaintTop = 0; int repaintBottom = 0; int maxFloatBottom = 0; if (childrenInline()) layoutInlineChildren(relayoutChildren, repaintTop, repaintBottom); else layoutBlockChildren(relayoutChildren, maxFloatBottom); // Expand our intrinsic height to encompass floats. int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); if (floatBottom() > (m_height - toAdd) && (isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBox() || m_hasColumns))) m_height = floatBottom() + toAdd; // Now lay out our columns within this intrinsic height, since they can slightly affect the intrinsic height as // we adjust for clean column breaks. int singleColumnBottom = layoutColumns(); // Calculate our new height. int oldHeight = m_height; calcHeight(); if (oldHeight != m_height) { if (oldHeight > m_height && maxFloatBottom > m_height && !childrenInline()) { // One of our children's floats may have become an overhanging float for us. We need to look for it. for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { RenderBlock* block = static_cast(child); if (block->floatBottom() + block->yPos() > m_height) addOverhangingFloats(block, -block->xPos(), -block->yPos(), false); } } } // We have to rebalance columns to the new height. layoutColumns(singleColumnBottom); // If the block got expanded in size, then increase our overflowheight to match. if (m_overflowHeight > m_height) m_overflowHeight -= toAdd; if (m_overflowHeight < m_height) m_overflowHeight = m_height; } if (previousHeight != m_height) relayoutChildren = true; // Some classes of objects (floats and fieldsets with no specified heights and table cells) expand to encompass // overhanging floats. if (hasOverhangingFloats() && expandsToEncloseOverhangingFloats()) { m_height = floatBottom(); m_height += borderBottom() + paddingBottom(); } if ((isCell || isInline() || isFloatingOrPositioned() || isRoot()) && !hasOverflowClip() && !hasControlClip()) addVisualOverflow(floatRect()); layoutPositionedObjects(relayoutChildren || isRoot()); positionListMarker(); // Always ensure our overflow width/height are at least as large as our width/height. m_overflowWidth = max(m_overflowWidth, m_width); m_overflowHeight = max(m_overflowHeight, m_height); if (!hasOverflowClip()) { if (ShadowData* boxShadow = style()->boxShadow()) { m_overflowLeft = min(m_overflowLeft, boxShadow->x - boxShadow->blur); m_overflowWidth = max(m_overflowWidth, m_width + boxShadow->x + boxShadow->blur); m_overflowTop = min(m_overflowTop, boxShadow->y - boxShadow->blur); m_overflowHeight = max(m_overflowHeight, m_height + boxShadow->y + boxShadow->blur); } } if (!hadColumns) view()->popLayoutState(); else view()->enableLayoutState(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. if (hasOverflowClip()) m_layer->updateScrollInfoAfterLayout(); // Repaint with our new bounds if they are different from our old bounds. bool didFullRepaint = false; if (checkForRepaint) didFullRepaint = repaintAfterLayoutIfNeeded(oldBounds, oldOutlineBox); if (!didFullRepaint && repaintTop != repaintBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { IntRect repaintRect(m_overflowLeft, repaintTop, m_overflowWidth - m_overflowLeft, repaintBottom - repaintTop); // FIXME: Deal with multiple column repainting. We have to split the repaint // rect up into multiple rects if it spans columns. repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); if (hasOverflowClip()) { // Adjust repaint rect for scroll offset int x = repaintRect.x(); int y = repaintRect.y(); layer()->subtractScrollOffset(x, y); repaintRect.setX(x); repaintRect.setY(y); // Don't allow this rect to spill out of our overflow box. repaintRect.intersect(IntRect(0, 0, m_width, m_height)); } // Make sure the rect is still non-empty after intersecting for overflow above if (!repaintRect.isEmpty()) repaintRectangle(repaintRect); // We need to do a partial repaint of our content. } setNeedsLayout(false); } void RenderBlock::adjustPositionedBlock(RenderObject* child, const MarginInfo& marginInfo) { if (child->hasStaticX()) { if (style()->direction() == LTR) child->setStaticX(borderLeft() + paddingLeft()); else child->setStaticX(borderRight() + paddingRight()); } if (child->hasStaticY()) { int y = m_height; if (!marginInfo.canCollapseWithTop()) { child->calcVerticalMargins(); int marginTop = child->marginTop(); int collapsedTopPos = marginInfo.posMargin(); int collapsedTopNeg = marginInfo.negMargin(); if (marginTop > 0) { if (marginTop > collapsedTopPos) collapsedTopPos = marginTop; } else { if (-marginTop > collapsedTopNeg) collapsedTopNeg = -marginTop; } y += (collapsedTopPos - collapsedTopNeg) - marginTop; } child->setStaticY(y); } } void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) { // The float should be positioned taking into account the bottom margin // of the previous flow. We add that margin into the height, get the // float positioned properly, and then subtract the margin out of the // height again. In the case of self-collapsing blocks, we always just // use the top margins, since the self-collapsing block collapsed its // own bottom margin into its top margin. // // Note also that the previous flow may collapse its margin into the top of // our block. If this is the case, then we do not add the margin in to our // height when computing the position of the float. This condition can be tested // for by simply calling canCollapseWithTop. See // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for // an example of this scenario. int marginOffset = marginInfo.canCollapseWithTop() ? 0 : marginInfo.margin(); m_height += marginOffset; positionNewFloats(); m_height -= marginOffset; } RenderObject* RenderBlock::handleSpecialChild(RenderObject* child, const MarginInfo& marginInfo, CompactInfo& compactInfo, bool& handled) { // Handle positioned children first. RenderObject* next = handlePositionedChild(child, marginInfo, handled); if (handled) return next; // Handle floating children next. next = handleFloatingChild(child, marginInfo, handled); if (handled) return next; // See if we have a compact element. If we do, then try to tuck the compact element into the margin space of the next block. next = handleCompactChild(child, compactInfo, handled); if (handled) return next; // Finally, see if we have a run-in element. return handleRunInChild(child, handled); } RenderObject* RenderBlock::handlePositionedChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled) { if (child->isPositioned()) { handled = true; child->containingBlock()->insertPositionedObject(child); adjustPositionedBlock(child, marginInfo); return child->nextSibling(); } return 0; } RenderObject* RenderBlock::handleFloatingChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled) { if (child->isFloating()) { handled = true; insertFloatingObject(child); adjustFloatingBlock(marginInfo); return child->nextSibling(); } return 0; } RenderObject* RenderBlock::handleCompactChild(RenderObject* child, CompactInfo& compactInfo, bool& handled) { // FIXME: We only deal with one compact at a time. It is unclear what should be // done if multiple contiguous compacts are encountered. For now we assume that // compact A followed by another compact B should simply be treated as block A. if (child->isCompact() && !compactInfo.compact() && (child->childrenInline() || child->isReplaced())) { // Get the next non-positioned/non-floating RenderBlock. RenderObject* next = child->nextSibling(); RenderObject* curr = next; while (curr && curr->isFloatingOrPositioned()) curr = curr->nextSibling(); if (curr && curr->isRenderBlock() && !curr->isCompact() && !curr->isRunIn()) { curr->calcWidth(); // So that horizontal margins are correct. child->setInline(true); // Need to compute the margins/width for the child as though it is an inline, so that it won't try to puff up the margins to // fill the containing block width. child->calcWidth(); int childMargins = child->marginLeft() + child->marginRight(); int margin = style()->direction() == LTR ? curr->marginLeft() : curr->marginRight(); if (margin >= (childMargins + child->maxPrefWidth())) { // The compact will fit in the margin. handled = true; compactInfo.set(child, curr); child->setPos(0,0); // This position will be updated to reflect the compact's // desired position and the line box for the compact will // pick that position up. // Remove the child. RenderObject* next = child->nextSibling(); removeChildNode(child); // Now insert the child under |curr|. curr->insertChildNode(child, curr->firstChild()); return next; } else child->setInline(false); // We didn't fit, so we remain a block-level element. } } return 0; } void RenderBlock::insertCompactIfNeeded(RenderObject* child, CompactInfo& compactInfo) { if (compactInfo.matches(child)) { // We have a compact child to squeeze in. RenderObject* compactChild = compactInfo.compact(); int compactXPos = borderLeft() + paddingLeft() + compactChild->marginLeft(); if (style()->direction() == RTL) { compactChild->calcWidth(); // have to do this because of the capped maxwidth compactXPos = width() - borderRight() - paddingRight() - marginRight() - compactChild->width() - compactChild->marginRight(); } compactXPos -= child->xPos(); // Put compactXPos into the child's coordinate space. compactChild->setPos(compactXPos, compactChild->yPos()); // Set the x position. compactInfo.clear(); } } RenderObject* RenderBlock::handleRunInChild(RenderObject* child, bool& handled) { // See if we have a run-in element with inline children. If the // children aren't inline, then just treat the run-in as a normal // block. if (child->isRunIn() && (child->childrenInline() || child->isReplaced())) { // Get the next non-positioned/non-floating RenderBlock. RenderObject* curr = child->nextSibling(); while (curr && curr->isFloatingOrPositioned()) curr = curr->nextSibling(); if (curr && (curr->isRenderBlock() && curr->childrenInline() && !curr->isCompact() && !curr->isRunIn())) { // The block acts like an inline, so just null out its // position. handled = true; child->setInline(true); child->setPos(0,0); // Remove the child. RenderObject* next = child->nextSibling(); removeChildNode(child); // Now insert the child under |curr|. curr->insertChildNode(child, curr->firstChild()); return next; } } return 0; } void RenderBlock::collapseMargins(RenderObject* child, MarginInfo& marginInfo, int yPosEstimate) { // Get our max pos and neg top margins. int posTop = child->maxTopMargin(true); int negTop = child->maxTopMargin(false); // For self-collapsing blocks, collapse our bottom margins into our // top to get new posTop and negTop values. if (child->isSelfCollapsingBlock()) { posTop = max(posTop, child->maxBottomMargin(true)); negTop = max(negTop, child->maxBottomMargin(false)); } // See if the top margin is quirky. We only care if this child has // margins that will collapse with us. bool topQuirk = child->isTopMarginQuirk() || style()->marginTopCollapse() == MDISCARD; if (marginInfo.canCollapseWithTop()) { // This child is collapsing with the top of the // block. If it has larger margin values, then we need to update // our own maximal values. if (!style()->htmlHacks() || !marginInfo.quirkContainer() || !topQuirk) setMaxTopMargins(max(posTop, maxTopPosMargin()), max(negTop, maxTopNegMargin())); // The minute any of the margins involved isn't a quirk, don't // collapse it away, even if the margin is smaller (www.webreference.com // has an example of this, a
with 0.8em author-specified inside // a
inside a . if (!marginInfo.determinedTopQuirk() && !topQuirk && (posTop-negTop)) { m_topMarginQuirk = false; marginInfo.setDeterminedTopQuirk(true); } if (!marginInfo.determinedTopQuirk() && topQuirk && marginTop() == 0) // We have no top margin and our top child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. // Don't do this for a block that split two inlines though. You do // still apply margins in this case. m_topMarginQuirk = true; } if (marginInfo.quirkContainer() && marginInfo.atTopOfBlock() && (posTop - negTop)) marginInfo.setTopQuirk(topQuirk); int ypos = m_height; if (child->isSelfCollapsingBlock()) { // This child has no height. We need to compute our // position before we collapse the child's margins together, // so that we can get an accurate position for the zero-height block. int collapsedTopPos = max(marginInfo.posMargin(), child->maxTopMargin(true)); int collapsedTopNeg = max(marginInfo.negMargin(), child->maxTopMargin(false)); marginInfo.setMargin(collapsedTopPos, collapsedTopNeg); // Now collapse the child's margins together, which means examining our // bottom margin values as well. marginInfo.setPosMarginIfLarger(child->maxBottomMargin(true)); marginInfo.setNegMarginIfLarger(child->maxBottomMargin(false)); if (!marginInfo.canCollapseWithTop()) // We need to make sure that the position of the self-collapsing block // is correct, since it could have overflowing content // that needs to be positioned correctly (e.g., a block that // had a specified height of 0 but that actually had subcontent). ypos = m_height + collapsedTopPos - collapsedTopNeg; } else { if (child->style()->marginTopCollapse() == MSEPARATE) { m_height += marginInfo.margin() + child->marginTop(); ypos = m_height; } else if (!marginInfo.atTopOfBlock() || (!marginInfo.canCollapseTopWithChildren() && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.topQuirk()))) { // We're collapsing with a previous sibling's margins and not // with the top of the block. m_height += max(marginInfo.posMargin(), posTop) - max(marginInfo.negMargin(), negTop); ypos = m_height; } marginInfo.setPosMargin(child->maxBottomMargin(true)); marginInfo.setNegMargin(child->maxBottomMargin(false)); if (marginInfo.margin()) marginInfo.setBottomQuirk(child->isBottomMarginQuirk() || style()->marginBottomCollapse() == MDISCARD); marginInfo.setSelfCollapsingBlockClearedFloat(false); } view()->addLayoutDelta(IntSize(0, yPosEstimate - ypos)); child->setPos(child->xPos(), ypos); if (ypos != yPosEstimate) { if (child->shrinkToAvoidFloats()) // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); if (!child->avoidsFloats() && child->containsFloats()) child->markAllDescendantsWithFloatsForLayout(); // Our guess was wrong. Make the child lay itself out again. child->layoutIfNeeded(); } } void RenderBlock::clearFloatsIfNeeded(RenderObject* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin) { int heightIncrease = getClearDelta(child); if (heightIncrease) { // The child needs to be lowered. Move the child so that it just clears the float. view()->addLayoutDelta(IntSize(0, -heightIncrease)); child->setPos(child->xPos(), child->yPos() + heightIncrease); if (child->isSelfCollapsingBlock()) { // For self-collapsing blocks that clear, they can still collapse their // margins with following siblings. Reset the current margins to represent // the self-collapsing block's margins only. marginInfo.setPosMargin(max(child->maxTopMargin(true), child->maxBottomMargin(true))); marginInfo.setNegMargin(max(child->maxTopMargin(false), child->maxBottomMargin(false))); // Adjust our height such that we are ready to be collapsed with subsequent siblings. m_height = child->yPos() - max(0, marginInfo.margin()); // Set a flag that we cleared a float so that we know both to increase the height of the block // to compensate for the clear and to avoid collapsing our margins with the parent block's // bottom margin. marginInfo.setSelfCollapsingBlockClearedFloat(true); } else // Increase our height by the amount we had to clear. m_height += heightIncrease; if (marginInfo.canCollapseWithTop()) { // We can no longer collapse with the top of the block since a clear // occurred. The empty blocks collapse into the cleared block. // FIXME: This isn't quite correct. Need clarification for what to do // if the height the cleared block is offset by is smaller than the // margins involved. setMaxTopMargins(oldTopPosMargin, oldTopNegMargin); marginInfo.setAtTopOfBlock(false); } // If our value of clear caused us to be repositioned vertically to be // underneath a float, we might have to do another layout to take into account // the extra space we now have available. if (child->shrinkToAvoidFloats()) // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); if (!child->avoidsFloats() && child->containsFloats()) child->markAllDescendantsWithFloatsForLayout(); child->layoutIfNeeded(); } } int RenderBlock::estimateVerticalPosition(RenderObject* child, const MarginInfo& marginInfo) { // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological // relayout if there are intruding floats. int yPosEstimate = m_height; if (!marginInfo.canCollapseWithTop()) { int childMarginTop = child->selfNeedsLayout() ? child->marginTop() : child->collapsedMarginTop(); yPosEstimate += max(marginInfo.margin(), childMarginTop); } return yPosEstimate; } void RenderBlock::determineHorizontalPosition(RenderObject* child) { if (style()->direction() == LTR) { int xPos = borderLeft() + paddingLeft(); // Add in our left margin. int chPos = xPos + child->marginLeft(); // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need // to shift over as necessary to dodge any floats that might get in the way. if (child->avoidsFloats()) { int leftOff = leftOffset(m_height); if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginLeft().type() != Auto) { if (child->marginLeft() < 0) leftOff += child->marginLeft(); chPos = max(chPos, leftOff); // Let the float sit in the child's margin if it can fit. } else if (leftOff != xPos) { // The object is shifting right. The object might be centered, so we need to // recalculate our horizontal margins. Note that the containing block content // width computation will take into account the delta between |leftOff| and |xPos| // so that we can just pass the content width in directly to the |calcHorizontalMargins| // function. static_cast(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos())); chPos = leftOff + child->marginLeft(); } } view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0)); child->setPos(chPos, child->yPos()); } else { int xPos = m_width - borderRight() - paddingRight() - verticalScrollbarWidth(); int chPos = xPos - (child->width() + child->marginRight()); if (child->avoidsFloats()) { int rightOff = rightOffset(m_height); if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginRight().type() != Auto) { if (child->marginRight() < 0) rightOff -= child->marginRight(); chPos = min(chPos, rightOff - child->width()); // Let the float sit in the child's margin if it can fit. } else if (rightOff != xPos) { // The object is shifting left. The object might be centered, so we need to // recalculate our horizontal margins. Note that the containing block content // width computation will take into account the delta between |rightOff| and |xPos| // so that we can just pass the content width in directly to the |calcHorizontalMargins| // function. static_cast(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos())); chPos = rightOff - child->marginRight() - child->width(); } } view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0)); child->setPos(chPos, child->yPos()); } } void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) { if (marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop()) { // Update our max pos/neg bottom margins, since we collapsed our bottom margins // with our children. setMaxBottomMargins(max(maxBottomPosMargin(), marginInfo.posMargin()), max(maxBottomNegMargin(), marginInfo.negMargin())); if (!marginInfo.bottomQuirk()) m_bottomMarginQuirk = false; if (marginInfo.bottomQuirk() && marginBottom() == 0) // We have no bottom margin and our last child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. m_bottomMarginQuirk = true; } } void RenderBlock::handleBottomOfBlock(int top, int bottom, MarginInfo& marginInfo) { // If our last flow was a self-collapsing block that cleared a float, then we don't // collapse it with the bottom of the block. if (!marginInfo.selfCollapsingBlockClearedFloat()) marginInfo.setAtBottomOfBlock(true); else { // We have to special case the negative margin situation (where the collapsed // margin of the self-collapsing block is negative), since there's no need // to make an adjustment in that case. if (marginInfo.margin() < 0) marginInfo.clearMargin(); } // If we can't collapse with children then go ahead and add in the bottom margin. if (!marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop() && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.bottomQuirk())) m_height += marginInfo.margin(); // Now add in our bottom border/padding. m_height += bottom; // Negative margins can cause our height to shrink below our minimal height (border/padding). // If this happens, ensure that the computed height is increased to the minimal height. m_height = max(m_height, top + bottom); // Always make sure our overflow height is at least our height. m_overflowHeight = max(m_height, m_overflowHeight); // Update our bottom collapsed margin info. setCollapsedBottomMargin(marginInfo); } void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatBottom) { int top = borderTop() + paddingTop(); int bottom = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); m_height = m_overflowHeight = top; // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, MarginInfo marginInfo(this, top, bottom); CompactInfo compactInfo; // Fieldsets need to find their legend and position it inside the border of the object. // The legend then gets skipped during normal layout. RenderObject* legend = layoutLegend(relayoutChildren); int previousFloatBottom = 0; maxFloatBottom = 0; RenderObject* child = firstChild(); while (child) { if (legend == child) { child = child->nextSibling(); continue; // Skip the legend, since it has already been positioned up in the fieldset's border. } int oldTopPosMargin = maxTopPosMargin(); int oldTopNegMargin = maxTopNegMargin(); // Make sure we layout children if they need it. // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into // an auto value. Add a method to determine this, so that we can avoid the relayout. if (relayoutChildren || (child->style()->height().isPercent() || child->style()->minHeight().isPercent() || child->style()->maxHeight().isPercent())) child->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (child->style()->paddingLeft().isPercent() || child->style()->paddingRight().isPercent())) child->setPrefWidthsDirty(true, false); // Handle the four types of special elements first. These include positioned content, floating content, compacts and // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. bool handled = false; RenderObject* next = handleSpecialChild(child, marginInfo, compactInfo, handled); if (handled) { child = next; continue; } // The child is a normal flow object. Compute its vertical margins now. child->calcVerticalMargins(); // Do not allow a collapse if the margin top collapse style is set to SEPARATE. if (child->style()->marginTopCollapse() == MSEPARATE) { marginInfo.setAtTopOfBlock(false); marginInfo.clearMargin(); } // Try to guess our correct y position. In most cases this guess will // be correct. Only if we're wrong (when we compute the real y position) // will we have to potentially relayout. int yPosEstimate = estimateVerticalPosition(child, marginInfo); // Cache our old rect so that we can dirty the proper repaint rects if the child moves. IntRect oldRect(child->xPos(), child->yPos() , child->width(), child->height()); // Go ahead and position the child as though it didn't collapse with the top. view()->addLayoutDelta(IntSize(0, child->yPos() - yPosEstimate)); child->setPos(child->xPos(), yPosEstimate); bool markDescendantsWithFloats = false; if (yPosEstimate != oldRect.y() && !child->avoidsFloats() && child->containsFloats()) markDescendantsWithFloats = true; else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { // If an element might be affected by the presence of floats, then always mark it for // layout. int fb = max(previousFloatBottom, floatBottom()); if (fb > m_height || fb > yPosEstimate) markDescendantsWithFloats = true; } if (markDescendantsWithFloats) child->markAllDescendantsWithFloatsForLayout(); if (child->isRenderBlock()) previousFloatBottom = max(previousFloatBottom, oldRect.y() + static_cast(child)->floatBottom()); bool childNeededLayout = child->needsLayout(); if (childNeededLayout) child->layout(); // Now determine the correct ypos based off examination of collapsing margin // values. collapseMargins(child, marginInfo, yPosEstimate); int postCollapseChildY = child->yPos(); // Now check for clear. clearFloatsIfNeeded(child, marginInfo, oldTopPosMargin, oldTopNegMargin); // We are no longer at the top of the block if we encounter a non-empty child. // This has to be done after checking for clear, so that margins can be reset if a clear occurred. if (marginInfo.atTopOfBlock() && !child->isSelfCollapsingBlock()) marginInfo.setAtTopOfBlock(false); // Now place the child in the correct horizontal position determineHorizontalPosition(child); // Update our height now that the child has been placed in the correct position. m_height += child->height(); if (child->style()->marginBottomCollapse() == MSEPARATE) { m_height += child->marginBottom(); marginInfo.clearMargin(); } // If the child has overhanging floats that intrude into following siblings (or possibly out // of this block), then the parent gets notified of the floats now. maxFloatBottom = max(maxFloatBottom, addOverhangingFloats(static_cast(child), -child->xPos(), -child->yPos(), !childNeededLayout)); // Update our overflow in case the child spills out the block. m_overflowTop = min(m_overflowTop, child->yPos() + child->overflowTop(false)); m_overflowHeight = max(m_overflowHeight, m_height + child->overflowHeight(false) - child->height()); m_overflowWidth = max(child->xPos() + child->overflowWidth(false), m_overflowWidth); m_overflowLeft = min(child->xPos() + child->overflowLeft(false), m_overflowLeft); // Insert our compact into the block margin if we have one. insertCompactIfNeeded(child, compactInfo); view()->addLayoutDelta(IntSize(child->xPos() - oldRect.x(), child->yPos() - oldRect.y())); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) { int finalChildX = child->xPos(); int finalChildY = child->yPos(); if (finalChildX != oldRect.x() || finalChildY != oldRect.y()) child->repaintDuringLayoutIfMoved(oldRect); else if (finalChildY != yPosEstimate || finalChildY != postCollapseChildY) { // The child invalidated itself during layout at an intermediate position, // but not at its final position. Take care of it now. child->repaint(); child->repaintOverhangingFloats(); } } child = child->nextSibling(); } // Now do the handling of the bottom of the block, adding in our bottom border/padding and // determining the correct collapsed bottom margin information. handleBottomOfBlock(top, bottom, marginInfo); } bool RenderBlock::layoutOnlyPositionedObjects() { if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout()) return false; if (!m_hasColumns) view()->pushLayoutState(this, IntSize(xPos(), yPos())); else view()->disableLayoutState(); // All we have to is lay out our positioned objects. layoutPositionedObjects(false); if (!m_hasColumns) view()->popLayoutState(); else view()->enableLayoutState(); if (hasOverflowClip()) m_layer->updateScrollInfoAfterLayout(); setNeedsLayout(false); return true; } void RenderBlock::layoutPositionedObjects(bool relayoutChildren) { if (m_positionedObjects) { RenderObject* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is // positioned explicitly) this should not incur a performance penalty. if (relayoutChildren || (r->hasStaticY() && r->parent() != this && r->parent()->isBlockFlow())) r->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (r->style()->paddingLeft().isPercent() || r->style()->paddingRight().isPercent())) r->setPrefWidthsDirty(true, false); r->layoutIfNeeded(); } } } void RenderBlock::markPositionedObjectsForLayout() { if (m_positionedObjects) { RenderObject* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; r->setChildNeedsLayout(true); } } } void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) { // Repaint any overhanging floats (if we know we're the one to paint them). if (hasOverhangingFloats()) { // We think that we must be in a bad state if m_floatingObjects is nil at this point, so // we assert on Debug builds and nil-check Release builds. ASSERT(m_floatingObjects); if (!m_floatingObjects) return; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating // in this block. Better yet would be to push extra state for the containers of other floats. view()->disableLayoutState(); for ( ; (r = it.current()); ++it) { // Only repaint the object if it is overhanging, is not in its own layer, and // is our responsibility to paint (noPaint isn't set). When paintAllDescendants is true, the latter // condition is replaced with being a descendant of us. if (r->endY > m_height && (paintAllDescendants && r->node->isDescendantOf(this) || !r->noPaint) && !r->node->hasLayer()) { r->node->repaint(); r->node->repaintOverhangingFloats(); } } view()->enableLayoutState(); } } void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty) { tx += m_x; ty += m_y; PaintPhase phase = paintInfo.phase; // Check if we need to do anything at all. // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView // paints the root's background. if (!isInlineFlow() && !isRoot()) { IntRect overflowBox = overflowRect(false); overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); overflowBox.move(tx, ty); if (!overflowBox.intersects(paintInfo.rect)) return; } bool useControlClip = phase != PaintPhaseBlockBackground && phase != PaintPhaseSelfOutline && hasControlClip(); // Push a clip. if (useControlClip) { if (phase == PaintPhaseOutline) paintInfo.phase = PaintPhaseChildOutlines; else if (phase == PaintPhaseChildBlockBackground) { paintInfo.phase = PaintPhaseBlockBackground; paintObject(paintInfo, tx, ty); paintInfo.phase = PaintPhaseChildBlockBackgrounds; } IntRect clipRect(controlClipRect(tx, ty)); if (clipRect.isEmpty()) return; paintInfo.context->save(); paintInfo.context->clip(clipRect); } paintObject(paintInfo, tx, ty); // Pop the clip. if (useControlClip) { paintInfo.context->restore(); if (phase == PaintPhaseOutline) { paintInfo.phase = PaintPhaseSelfOutline; paintObject(paintInfo, tx, ty); paintInfo.phase = phase; } else if (phase == PaintPhaseChildBlockBackground) paintInfo.phase = phase; } } void RenderBlock::paintColumns(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats) { // We need to do multiple passes, breaking up our child painting into strips. GraphicsContext* context = paintInfo.context; int currXOffset = 0; int currYOffset = 0; int ruleAdd = borderLeft() + paddingLeft(); int ruleX = 0; int colGap = columnGap(); const Color& ruleColor = style()->columnRuleColor(); bool ruleTransparent = style()->columnRuleIsTransparent(); EBorderStyle ruleStyle = style()->columnRuleStyle(); int ruleWidth = style()->columnRuleWidth(); bool renderRule = !paintingFloats && ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap; Vector* colRects = columnRects(); unsigned colCount = colRects->size(); for (unsigned i = 0; i < colCount; i++) { // For each rect, we clip to the rect, and then we adjust our coords. IntRect colRect = colRects->at(i); colRect.move(tx, ty); context->save(); // Each strip pushes a clip, since column boxes are specified as being // like overflow:hidden. context->clip(colRect); // Adjust tx and ty to change where we paint. PaintInfo info(paintInfo); info.rect.intersect(colRect); // Adjust our x and y when painting. int finalX = tx + currXOffset; int finalY = ty + currYOffset; if (paintingFloats) paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection); else paintContents(info, finalX, finalY); // Move to the next position. if (style()->direction() == LTR) { ruleX += colRect.width() + colGap / 2; currXOffset += colRect.width() + colGap; } else { ruleX -= (colRect.width() + colGap / 2); currXOffset -= (colRect.width() + colGap); } currYOffset -= colRect.height(); context->restore(); // Now paint the column rule. if (renderRule && paintInfo.phase == PaintPhaseForeground && i < colCount - 1) { int ruleStart = ruleX - ruleWidth / 2 + ruleAdd; int ruleEnd = ruleStart + ruleWidth; drawBorder(paintInfo.context, tx + ruleStart, ty + borderTop() + paddingTop(), tx + ruleEnd, ty + borderTop() + paddingTop() + contentHeight(), style()->direction() == LTR ? BSLeft : BSRight, ruleColor, style()->color(), ruleStyle, 0, 0); } ruleX = currXOffset; } } void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty) { // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document // will do a full repaint(). if (document()->didLayoutWithPendingStylesheets() && !isRenderView()) return; if (childrenInline()) paintLines(paintInfo, tx, ty); else paintChildren(paintInfo, tx, ty); } void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty) { PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; // We don't paint our own background, but we do let the kids paint their backgrounds. PaintInfo info(paintInfo); info.phase = newPhase; info.paintingRoot = paintingRootForChildren(paintInfo); bool isPrinting = document()->printing(); for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { // Check for page-break-before: always, and if it's set, break and bail. if (isPrinting && !childrenInline() && child->style()->pageBreakBefore() == PBALWAYS && inRootBlockContext() && (ty + child->yPos()) > paintInfo.rect.y() && (ty + child->yPos()) < paintInfo.rect.bottom()) { view()->setBestTruncatedAt(ty + child->yPos(), this, true); return; } if (!child->hasLayer() && !child->isFloating()) child->paint(info, tx, ty); // Check for page-break-after: always, and if it's set, break and bail. if (isPrinting && !childrenInline() && child->style()->pageBreakAfter() == PBALWAYS && inRootBlockContext() && (ty + child->yPos() + child->height()) > paintInfo.rect.y() && (ty + child->yPos() + child->height()) < paintInfo.rect.bottom()) { view()->setBestTruncatedAt(ty + child->yPos() + child->height() + max(0, child->collapsedMarginBottom()), this, true); return; } } } void RenderBlock::paintCaret(PaintInfo& paintInfo, CaretType type) { SelectionController* selectionController = type == CursorCaret ? document()->frame()->selectionController() : document()->frame()->dragCaretController(); Node* caretNode = selectionController->start().node(); RenderObject* renderer = caretNode ? caretNode->renderer() : 0; if (!renderer) return; // if caretNode is a block and caret is inside it then caret should be painted by that block bool cursorInsideBlockCaretNode = renderer->isBlockFlow() && selectionController->isInsideNode(); if ((cursorInsideBlockCaretNode ? renderer : renderer->containingBlock()) == this && selectionController->isContentEditable()) { if (type == CursorCaret) document()->frame()->paintCaret(paintInfo.context, paintInfo.rect); else document()->frame()->paintDragCaret(paintInfo.context, paintInfo.rect); } } void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty) { PaintPhase paintPhase = paintInfo.phase; // If we're a repositioned run-in or a compact, don't paint background/borders. bool inlineFlow = isInlineFlow(); // 1. paint background, borders etc if (!inlineFlow && (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && hasBoxDecorations() && style()->visibility() == VISIBLE) { paintBoxDecorations(paintInfo, tx, ty); } // We're done. We don't bother painting any children. if (paintPhase == PaintPhaseBlockBackground) return; // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).s int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) m_layer->subtractScrollOffset(scrolledX, scrolledY); // 2. paint contents if (paintPhase != PaintPhaseSelfOutline) { if (m_hasColumns) paintColumns(paintInfo, scrolledX, scrolledY); else paintContents(paintInfo, scrolledX, scrolledY); } // 3. paint selection // FIXME: Make this work with multi column layouts. For now don't fill gaps. bool isPrinting = document()->printing(); if (!inlineFlow && !isPrinting && !m_hasColumns) paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks. // 4. paint floats. if (!inlineFlow && (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection)) { if (m_hasColumns) paintColumns(paintInfo, scrolledX, scrolledY, true); else paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection); } // 5. paint outline. if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) RenderObject::paintOutline(paintInfo.context, tx, ty, width(), height(), style()); // 6. paint continuation outlines. if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { if (continuation() && continuation()->hasOutline() && continuation()->style()->visibility() == VISIBLE) { RenderFlow* inlineFlow = static_cast(continuation()->element()->renderer()); if (!inlineFlow->hasLayer()) containingBlock()->addContinuationWithOutline(inlineFlow); else if (!inlineFlow->firstLineBox()) inlineFlow->paintOutline(paintInfo.context, tx - xPos() + inlineFlow->containingBlock()->xPos(), ty - yPos() + inlineFlow->containingBlock()->yPos()); } paintContinuationOutlines(paintInfo, tx, ty); } // 7. paint caret. // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, // then paint the caret. if (!inlineFlow && paintPhase == PaintPhaseForeground) { paintCaret(paintInfo, CursorCaret); paintCaret(paintInfo, DragCaret); } } void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool paintSelection) { if (!m_floatingObjects) return; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { // Only paint the object if our noPaint flag isn't set. if (!r->noPaint && !r->node->hasLayer()) { PaintInfo currentPaintInfo(paintInfo); currentPaintInfo.phase = paintSelection ? PaintPhaseSelection : PaintPhaseBlockBackground; int currentTX = tx + r->left - r->node->xPos() + r->node->marginLeft(); int currentTY = ty + r->startY - r->node->yPos() + r->node->marginTop(); r->node->paint(currentPaintInfo, currentTX, currentTY); if (!paintSelection) { currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; r->node->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseFloat; r->node->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseForeground; r->node->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseOutline; r->node->paint(currentPaintInfo, currentTX, currentTY); } } } } void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty) { if (!shouldPaintWithinRoot(paintInfo) || !firstLineBox()) return; if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { // We can check the first box and last box and avoid painting if we don't // intersect. int yPos = ty + firstLineBox()->yPos();; int h = lastLineBox()->yPos() + lastLineBox()->height() - firstLineBox()->yPos(); if (yPos >= paintInfo.rect.bottom() || yPos + h <= paintInfo.rect.y()) return; // See if our boxes intersect with the dirty rect. If so, then we paint // them. Note that boxes can easily overlap, so we can't make any assumptions // based off positions of our first line box or our last line box. for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { yPos = ty + curr->yPos(); h = curr->height(); if (curr->ellipsisBox() && yPos < paintInfo.rect.bottom() && yPos + h > paintInfo.rect.y()) curr->paintEllipsisBox(paintInfo, tx, ty); } } } HashMap* continuationOutlineTable() { static HashMap table; return &table; } void RenderBlock::addContinuationWithOutline(RenderFlow* flow) { // We can't make this work if the inline is in a layer. We'll just rely on the broken // way of painting. ASSERT(!flow->layer()); HashMap* table = continuationOutlineTable(); RenderFlowSequencedSet* continuations = table->get(this); if (!continuations) { continuations = new RenderFlowSequencedSet; table->set(this, continuations); } continuations->add(flow); } void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty) { HashMap* table = continuationOutlineTable(); if (table->isEmpty()) return; RenderFlowSequencedSet* continuations = table->get(this); if (!continuations) return; // Paint each continuation outline. RenderFlowSequencedSet::iterator end = continuations->end(); for (RenderFlowSequencedSet::iterator it = continuations->begin(); it != end; ++it) { // Need to add in the coordinates of the intervening blocks. RenderFlow* flow = *it; RenderBlock* block = flow->containingBlock(); for ( ; block && block != this; block = block->containingBlock()) { tx += block->xPos(); ty += block->yPos(); } ASSERT(block); flow->paintOutline(info.context, tx, ty); } // Delete delete continuations; table->remove(this); } void RenderBlock::setSelectionState(SelectionState s) { if (selectionState() == s) return; if (s == SelectionInside && selectionState() != SelectionNone) return; if ((s == SelectionStart && selectionState() == SelectionEnd) || (s == SelectionEnd && selectionState() == SelectionStart)) m_selectionState = SelectionBoth; else m_selectionState = s; RenderBlock* cb = containingBlock(); if (cb && !cb->isRenderView()) cb->setSelectionState(s); } bool RenderBlock::shouldPaintSelectionGaps() const { return m_selectionState != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); } bool RenderBlock::isSelectionRoot() const { if (!element()) return false; // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. if (isTable()) return false; if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform()) return true; if (view() && view()->selectionStart()) { Node* startElement = view()->selectionStart()->element(); if (startElement && startElement->rootEditableElement() == element()) return true; } return false; } GapRects RenderBlock::selectionGapRects() { ASSERT(!needsLayout()); if (!shouldPaintSelectionGaps()) return GapRects(); int tx, ty; absolutePositionForContent(tx, ty); if (hasOverflowClip()) layer()->subtractScrollOffset(tx, ty); int lastTop = -borderTopExtra(); int lastLeft = leftSelectionOffset(this, lastTop); int lastRight = rightSelectionOffset(this, lastTop); return fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight); } void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty) { if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { int lastTop = -borderTopExtra(); int lastLeft = leftSelectionOffset(this, lastTop); int lastRight = rightSelectionOffset(this, lastTop); fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight, &paintInfo); } } GapRects RenderBlock::fillSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is // fixed). GapRects result; if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. return result; if (m_hasColumns || hasTransform()) { // FIXME: We should learn how to gap fill multiple columns and transforms eventually. lastTop = (ty - blockY) + height(); lastLeft = leftSelectionOffset(rootBlock, height()); lastRight = rightSelectionOffset(rootBlock, height()); return result; } if (childrenInline()) result = fillInlineSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); else result = fillBlockSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. if (rootBlock == this && (m_selectionState != SelectionBoth && m_selectionState != SelectionEnd)) result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + height() + borderBottomExtra(), rootBlock, blockX, blockY, paintInfo)); return result; } GapRects RenderBlock::fillInlineSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { GapRects result; bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; if (!firstLineBox()) { if (containsStart) { // Go ahead and update our lastY to be the bottom of the block.


s or empty blocks with height can trip this // case. lastTop = (ty - blockY) + height(); lastLeft = leftSelectionOffset(rootBlock, height()); lastRight = rightSelectionOffset(rootBlock, height()); } return result; } RootInlineBox* lastSelectedLine = 0; RootInlineBox* curr; for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } // Now paint the gaps for the lines. for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { int selTop = curr->selectionTop(); int selHeight = curr->selectionHeight(); if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + selTop, rootBlock, blockX, blockY, paintInfo)); if (!paintInfo || ty + selTop < paintInfo->rect.bottom() && ty + selTop + selHeight > paintInfo->rect.y()) result.unite(curr->fillLineSelectionGap(selTop, selHeight, rootBlock, blockX, blockY, tx, ty, paintInfo)); lastSelectedLine = curr; } if (containsStart && !lastSelectedLine) // Selection must start just after our last line. lastSelectedLine = lastRootBox(); if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { // Go ahead and update our lastY to be the bottom of the last selected line. lastTop = (ty - blockY) + lastSelectedLine->bottomOverflow(); lastLeft = leftSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow()); lastRight = rightSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow()); } return result; } GapRects RenderBlock::fillBlockSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { GapRects result; // Go ahead and jump right to the first block child that contains some selected objects. RenderObject* curr; for (curr = firstChild(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSibling()) { } for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSibling()) { SelectionState childState = curr->selectionState(); if (childState == SelectionBoth || childState == SelectionEnd) sawSelectionEnd = true; if (curr->isFloatingOrPositioned()) continue; // We must be a normal flow object in order to even be considered. if (curr->isRelPositioned() && curr->hasLayer()) { // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. // Just disregard it completely. int x = 0; int y = 0; curr->layer()->relativePositionOffset(x, y); if (x || y) continue; } bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); if (fillBlockGaps) { // We need to fill the vertical gap above this object. if (childState == SelectionEnd || childState == SelectionInside) // Fill the gap above the object. result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + curr->yPos(), rootBlock, blockX, blockY, paintInfo)); // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* // our object. We know this if the selection did not end inside our object. if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) childState = SelectionNone; // Fill side gaps on this object based off its state. bool leftGap, rightGap; getHorizontalSelectionGapInfo(childState, leftGap, rightGap); if (leftGap) result.uniteLeft(fillLeftSelectionGap(this, curr->xPos(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); if (rightGap) result.uniteRight(fillRightSelectionGap(this, curr->xPos() + curr->width(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); // Update lastTop to be just underneath the object. lastLeft and lastRight extend as far as // they can without bumping into floating or positioned objects. Ideally they will go right up // to the border of the root selection block. lastTop = (ty - blockY) + (curr->yPos() + curr->height()); lastLeft = leftSelectionOffset(rootBlock, curr->yPos() + curr->height()); lastRight = rightSelectionOffset(rootBlock, curr->yPos() + curr->height()); } else if (childState != SelectionNone) // We must be a block that has some selected object inside it. Go ahead and recur. result.unite(static_cast(curr)->fillSelectionGaps(rootBlock, blockX, blockY, tx + curr->xPos(), ty + curr->yPos(), lastTop, lastLeft, lastRight, paintInfo)); } return result; } IntRect RenderBlock::fillHorizontalSelectionGap(RenderObject* selObj, int xPos, int yPos, int width, int height, const PaintInfo* paintInfo) { if (width <= 0 || height <= 0) return IntRect(); IntRect gapRect(xPos, yPos, width, height); if (paintInfo && selObj->style()->visibility() == VISIBLE) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); return gapRect; } IntRect RenderBlock::fillVerticalSelectionGap(int lastTop, int lastLeft, int lastRight, int bottomY, RenderBlock* rootBlock, int blockX, int blockY, const PaintInfo* paintInfo) { int top = blockY + lastTop; int height = bottomY - top; if (height <= 0) return IntRect(); // Get the selection offsets for the bottom of the gap int left = blockX + max(lastLeft, leftSelectionOffset(rootBlock, bottomY)); int right = blockX + min(lastRight, rightSelectionOffset(rootBlock, bottomY)); int width = right - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selectionBackgroundColor()); return gapRect; } IntRect RenderBlock::fillLeftSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, const PaintInfo* paintInfo) { int top = yPos + ty; int left = blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height)); int width = tx + xPos - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); return gapRect; } IntRect RenderBlock::fillRightSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, const PaintInfo* paintInfo) { int left = xPos + tx; int top = yPos + ty; int right = blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height)); int width = right - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); return gapRect; } void RenderBlock::getHorizontalSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) { bool ltr = style()->direction() == LTR; leftGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionEnd && ltr) || (state == RenderObject::SelectionStart && !ltr); rightGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionStart && ltr) || (state == RenderObject::SelectionEnd && !ltr); } int RenderBlock::leftSelectionOffset(RenderBlock* rootBlock, int y) { int left = leftOffset(y); if (left == borderLeft() + paddingLeft()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->leftSelectionOffset(rootBlock, y + yPos()); return left; } else { RenderBlock* cb = this; while (cb != rootBlock) { left += cb->xPos(); cb = cb->containingBlock(); } } return left; } int RenderBlock::rightSelectionOffset(RenderBlock* rootBlock, int y) { int right = rightOffset(y); if (right == (contentWidth() + (borderLeft() + paddingLeft()))) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->rightSelectionOffset(rootBlock, y + yPos()); return right; } else { RenderBlock* cb = this; while (cb != rootBlock) { right += cb->xPos(); cb = cb->containingBlock(); } } return right; } void RenderBlock::insertPositionedObject(RenderObject *o) { // Create the list of special objects if we don't aleady have one if (!m_positionedObjects) m_positionedObjects = new ListHashSet; m_positionedObjects->add(o); } void RenderBlock::removePositionedObject(RenderObject *o) { if (m_positionedObjects) m_positionedObjects->remove(o); } void RenderBlock::removePositionedObjects(RenderBlock* o) { if (!m_positionedObjects) return; RenderObject* r; Iterator end = m_positionedObjects->end(); Vector deadObjects; for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; if (!o || r->isDescendantOf(o)) { if (o) r->setChildNeedsLayout(true, false); // It is parent blocks job to add positioned child to positioned objects list of its containing block // Parent layout needs to be invalidated to ensure this happens. RenderObject* p = r->parent(); while (p && !p->isRenderBlock()) p = p->parent(); if (p) p->setChildNeedsLayout(true); deadObjects.append(r); } } for (unsigned i = 0; i < deadObjects.size(); i++) m_positionedObjects->remove(deadObjects.at(i)); } void RenderBlock::insertFloatingObject(RenderObject *o) { // Create the list of special objects if we don't aleady have one if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } else { // Don't insert the object again if it's already in the list DeprecatedPtrListIterator it(*m_floatingObjects); FloatingObject* f; while ( (f = it.current()) ) { if (f->node == o) return; ++it; } } // Create the special object entry & append it to the list FloatingObject *newObj; if (o->isFloating()) { // floating object o->layoutIfNeeded(); if(o->style()->floating() == FLEFT) newObj = new FloatingObject(FloatingObject::FloatLeft); else newObj = new FloatingObject(FloatingObject::FloatRight); newObj->startY = -1; newObj->endY = -1; newObj->width = o->width() + o->marginLeft() + o->marginRight(); newObj->noPaint = o->hasLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. } else { // We should never get here, as insertFloatingObject() should only ever be called with floating // objects. ASSERT(false); newObj = 0; // keep gcc's uninitialized variable warnings happy } newObj->node = o; m_floatingObjects->append(newObj); } void RenderBlock::removeFloatingObject(RenderObject *o) { if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while (it.current()) { if (it.current()->node == o) m_floatingObjects->removeRef(it.current()); ++it; } } } void RenderBlock::positionNewFloats() { if (!m_floatingObjects) return; FloatingObject* f = m_floatingObjects->last(); // If all floats have already been positioned, then we have no work to do. if (!f || f->startY != -1) return; // Move backwards through our floating object list until we find a float that has // already been positioned. Then we'll be able to move forward, positioning all of // the new floats that need it. FloatingObject* lastFloat = m_floatingObjects->getPrev(); while (lastFloat && lastFloat->startY == -1) { f = m_floatingObjects->prev(); lastFloat = m_floatingObjects->getPrev(); } int y = m_height; // The float cannot start above the y position of the last positioned float. if (lastFloat) y = max(lastFloat->startY, y); // Now walk through the set of unpositioned floats and place them. while (f) { // The containing block is responsible for positioning floats, so if we have floats in our // list that come from somewhere else, do not attempt to position them. if (f->node->containingBlock() != this) { f = m_floatingObjects->next(); continue; } RenderObject* o = f->node; int _height = o->height() + o->marginTop() + o->marginBottom(); int ro = rightOffset(); // Constant part of right offset. int lo = leftOffset(); // Constat part of left offset. int fwidth = f->width; // The width we look for. if (ro - lo < fwidth) fwidth = ro - lo; // Never look for more than what will be available. IntRect oldRect(o->xPos(), o->yPos() , o->width(), o->height()); if (o->style()->clear() & CLEFT) y = max(leftBottom(), y); if (o->style()->clear() & CRIGHT) y = max(rightBottom(), y); if (o->style()->floating() == FLEFT) { int heightRemainingLeft = 1; int heightRemainingRight = 1; int fx = leftRelOffset(y,lo, false, &heightRemainingLeft); while (rightRelOffset(y,ro, false, &heightRemainingRight)-fx < fwidth) { y += min(heightRemainingLeft, heightRemainingRight); fx = leftRelOffset(y,lo, false, &heightRemainingLeft); } fx = max(0, fx); f->left = fx; o->setPos(fx + o->marginLeft(), y + o->marginTop()); } else { int heightRemainingLeft = 1; int heightRemainingRight = 1; int fx = rightRelOffset(y,ro, false, &heightRemainingRight); while (fx - leftRelOffset(y,lo, false, &heightRemainingLeft) < fwidth) { y += min(heightRemainingLeft, heightRemainingRight); fx = rightRelOffset(y, ro, false, &heightRemainingRight); } fx = max(f->width, fx); f->left = fx - f->width; o->setPos(fx - o->marginRight() - o->width(), y + o->marginTop()); } f->startY = y; f->endY = f->startY + _height; // If the child moved, we have to repaint it. if (o->checkForRepaintDuringLayout()) o->repaintDuringLayoutIfMoved(oldRect); f = m_floatingObjects->next(); } } void RenderBlock::newLine() { positionNewFloats(); // set y position int newY = 0; switch(m_clearStatus) { case CLEFT: newY = leftBottom(); break; case CRIGHT: newY = rightBottom(); break; case CBOTH: newY = floatBottom(); default: break; } if (m_height < newY) m_height = newY; m_clearStatus = CNONE; } int RenderBlock::leftOffset() const { return borderLeft()+paddingLeft(); } int RenderBlock::leftRelOffset(int y, int fixedOffset, bool applyTextIndent, int *heightRemaining ) const { int left = fixedOffset; if (m_floatingObjects) { if ( heightRemaining ) *heightRemaining = 1; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { //kdDebug( 6040 ) <<(void *)this << " left: sy, ey, x, w " << r->startY << "," << r->endY << "," << r->left << "," << r->width << " " << endl; if (r->startY <= y && r->endY > y && r->type() == FloatingObject::FloatLeft && r->left + r->width > left) { left = r->left + r->width; if ( heightRemaining ) *heightRemaining = r->endY - y; } } } if (applyTextIndent && m_firstLine && style()->direction() == LTR) { int cw=0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableWidth(); left += style()->textIndent().calcMinValue(cw); } //kdDebug( 6040 ) << "leftOffset(" << y << ") = " << left << endl; return left; } int RenderBlock::rightOffset() const { return borderLeft() + paddingLeft() + availableWidth(); } int RenderBlock::rightRelOffset(int y, int fixedOffset, bool applyTextIndent, int *heightRemaining ) const { int right = fixedOffset; if (m_floatingObjects) { if (heightRemaining) *heightRemaining = 1; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { //kdDebug( 6040 ) << "right: sy, ey, x, w " << r->startY << "," << r->endY << "," << r->left << "," << r->width << " " << endl; if (r->startY <= y && r->endY > y && r->type() == FloatingObject::FloatRight && r->left < right) { right = r->left; if ( heightRemaining ) *heightRemaining = r->endY - y; } } } if (applyTextIndent && m_firstLine && style()->direction() == RTL) { int cw=0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableWidth(); right -= style()->textIndent().calcMinValue(cw); } //kdDebug( 6040 ) << "rightOffset(" << y << ") = " << right << endl; return right; } int RenderBlock::lineWidth(int y) const { //kdDebug( 6040 ) << "lineWidth(" << y << ")=" << rightOffset(y) - leftOffset(y) << endl; int result = rightOffset(y) - leftOffset(y); return (result < 0) ? 0 : result; } int RenderBlock::nearestFloatBottom(int height) const { if (!m_floatingObjects) return 0; int bottom = 0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->endY>height && (r->endYendY; return max(bottom, height); } int RenderBlock::floatBottom() const { if (!m_floatingObjects) return 0; int bottom=0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->endY>bottom) bottom=r->endY; return bottom; } IntRect RenderBlock::floatRect() const { IntRect result; if (!m_floatingObjects || hasOverflowClip()) return result; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { if (!r->noPaint && !r->node->hasLayer()) { IntRect childRect = r->node->overflowRect(false); childRect.move(r->left + r->node->marginLeft(), r->startY + r->node->marginTop()); result.unite(childRect); } } return result; } int RenderBlock::lowestPosition(bool includeOverflowInterior, bool includeSelf) const { int bottom = RenderFlow::lowestPosition(includeOverflowInterior, includeSelf); if (!includeOverflowInterior && hasOverflowClip()) return bottom; if (includeSelf && m_overflowHeight > bottom) bottom = m_overflowHeight; if (m_positionedObjects) { RenderObject* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the lowest position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely to the left of the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the lowest position. if (!isRenderView() || r->xPos() + r->width() > 0 || r->xPos() + r->rightmostPosition(false) > 0) { int lp = r->yPos() + r->lowestPosition(false); bottom = max(bottom, lp); } } } } if (m_hasColumns) { Vector* colRects = columnRects(); for (unsigned i = 0; i < colRects->size(); i++) bottom = max(bottom, colRects->at(i).bottom()); return bottom; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (!r->noPaint || r->node->hasLayer()) { int lp = r->startY + r->node->marginTop() + r->node->lowestPosition(false); bottom = max(bottom, lp); } } } if (!includeSelf && lastLineBox()) { int lp = lastLineBox()->yPos() + lastLineBox()->height(); bottom = max(bottom, lp); } return bottom; } int RenderBlock::rightmostPosition(bool includeOverflowInterior, bool includeSelf) const { int right = RenderFlow::rightmostPosition(includeOverflowInterior, includeSelf); if (!includeOverflowInterior && hasOverflowClip()) return right; if (includeSelf && m_overflowWidth > right) right = m_overflowWidth; if (m_positionedObjects) { RenderObject* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin() ; it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the rightmost position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely above the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the rightmost position. if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) { int rp = r->xPos() + r->rightmostPosition(false); right = max(right, rp); } } } } if (m_hasColumns) { // This only matters for LTR if (style()->direction() == LTR) right = max(columnRects()->last().right(), right); return right; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (!r->noPaint || r->node->hasLayer()) { int rp = r->left + r->node->marginLeft() + r->node->rightmostPosition(false); right = max(right, rp); } } } if (!includeSelf && firstLineBox()) { for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) { int rp = currBox->xPos() + currBox->width(); // If this node is a root editable element, then the rightmostPosition should account for a caret at the end. // FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to. if (node()->isContentEditable() && node() == node()->rootEditableElement() && style()->direction() == LTR) rp += 1; right = max(right, rp); } } return right; } int RenderBlock::leftmostPosition(bool includeOverflowInterior, bool includeSelf) const { int left = RenderFlow::leftmostPosition(includeOverflowInterior, includeSelf); if (!includeOverflowInterior && hasOverflowClip()) return left; if (includeSelf && m_overflowLeft < left) left = m_overflowLeft; if (m_positionedObjects) { RenderObject* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the leftmost position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely above the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the leftmost position. if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) { int lp = r->xPos() + r->leftmostPosition(false); left = min(left, lp); } } } } if (m_hasColumns) { // This only matters for RTL if (style()->direction() == RTL) left = min(columnRects()->last().x(), left); return left; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (!r->noPaint || r->node->hasLayer()) { int lp = r->left + r->node->marginLeft() + r->node->leftmostPosition(false); left = min(left, lp); } } } if (!includeSelf && firstLineBox()) { for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) left = min(left, (int)currBox->xPos()); } return left; } int RenderBlock::leftBottom() { if (!m_floatingObjects) return 0; int bottom=0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->endY > bottom && r->type() == FloatingObject::FloatLeft) bottom=r->endY; return bottom; } int RenderBlock::rightBottom() { if (!m_floatingObjects) return 0; int bottom=0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->endY>bottom && r->type() == FloatingObject::FloatRight) bottom=r->endY; return bottom; } void RenderBlock::clearFloats() { if (m_floatingObjects) m_floatingObjects->clear(); // Inline blocks are covered by the isReplaced() check in the avoidFloats method. if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) return; // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted // to avoid floats. bool parentHasFloats = false; RenderObject *prev = previousSibling(); while (prev && (!prev->isRenderBlock() || prev->avoidsFloats() || prev->isFloatingOrPositioned())) { if (prev->isFloating()) parentHasFloats = true; prev = prev->previousSibling(); } // First add in floats from the parent. int offset = m_y; if (parentHasFloats) addIntrudingFloats(static_cast(parent()), parent()->borderLeft() + parent()->paddingLeft(), offset); int xoffset = 0; if (prev) offset -= prev->yPos(); else { prev = parent(); xoffset += prev->borderLeft() + prev->paddingLeft(); } //kdDebug() << "RenderBlock::clearFloats found previous "<< (void *)this << " prev=" << (void *)prev<< endl; // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. if (!prev->isRenderBlock()) return; RenderBlock* block = static_cast(prev); if (!block->m_floatingObjects) return; if (block->floatBottom() > offset) addIntrudingFloats(block, xoffset, offset); } int RenderBlock::addOverhangingFloats(RenderBlock* child, int xoff, int yoff, bool makeChildPaintOtherFloats) { // Prevent floats from being added to the canvas by the root element, e.g., . if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot()) return 0; int lowestFloatBottom = 0; // Floats that will remain the child's responsiblity to paint should factor into its // visual overflow. IntRect floatsOverflowRect; DeprecatedPtrListIterator it(*child->m_floatingObjects); for (FloatingObject* r; (r = it.current()); ++it) { int bottom = child->yPos() + r->endY; lowestFloatBottom = max(lowestFloatBottom, bottom); if (bottom > height()) { // If the object is not in the list, we add it now. if (!containsFloat(r->node)) { FloatingObject *floatingObj = new FloatingObject(r->type()); floatingObj->startY = r->startY - yoff; floatingObj->endY = r->endY - yoff; floatingObj->left = r->left - xoff; floatingObj->width = r->width; floatingObj->node = r->node; // The nearest enclosing layer always paints the float (so that zindex and stacking // behaves properly). We always want to propagate the desire to paint the float as // far out as we can, to the outermost block that overlaps the float, stopping only // if we hit a layer boundary. if (r->node->enclosingLayer() == enclosingLayer()) r->noPaint = true; else floatingObj->noPaint = true; // We create the floating object list lazily. if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } m_floatingObjects->append(floatingObj); } } else if (makeChildPaintOtherFloats && r->noPaint && !r->node->hasLayer() && r->node->isDescendantOf(child) && r->node->enclosingLayer() == child->enclosingLayer()) // The float is not overhanging from this block, so if it is a descendant of the child, the child should // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing // layer. // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats // it should paint. r->noPaint = false; if (!r->noPaint && !r->node->hasLayer()) { IntRect floatOverflowRect = r->node->overflowRect(false); floatOverflowRect.move(r->left + r->node->marginLeft(), r->startY + r->node->marginTop()); floatsOverflowRect.unite(floatOverflowRect); } } child->addVisualOverflow(floatsOverflowRect); return lowestFloatBottom; } void RenderBlock::addIntrudingFloats(RenderBlock* prev, int xoff, int yoff) { // If the parent or previous sibling doesn't have any floats to add, don't bother. if (!prev->m_floatingObjects) return; DeprecatedPtrListIterator it(*prev->m_floatingObjects); for (FloatingObject *r; (r = it.current()); ++it) { if (r->endY > yoff) { // The object may already be in our list. Check for it up front to avoid // creating duplicate entries. FloatingObject* f = 0; if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while ((f = it.current())) { if (f->node == r->node) break; ++it; } } if (!f) { FloatingObject *floatingObj = new FloatingObject(r->type()); floatingObj->startY = r->startY - yoff; floatingObj->endY = r->endY - yoff; floatingObj->left = r->left - xoff; // Applying the child's margin makes no sense in the case where the child was passed in. // since his own margin was added already through the subtraction of the |xoff| variable // above. |xoff| will equal -flow->marginLeft() in this case, so it's already been taken // into account. Only apply this code if |child| is false, since otherwise the left margin // will get applied twice. if (prev != parent()) floatingObj->left += prev->marginLeft(); floatingObj->left -= marginLeft(); floatingObj->noPaint = true; // We are not in the direct inheritance chain for this float. We will never paint it. floatingObj->width = r->width; floatingObj->node = r->node; // We create the floating object list lazily. if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } m_floatingObjects->append(floatingObj); } } } } bool RenderBlock::avoidsFloats() const { // Floats can't intrude into our box if we have a non-auto column count or width. return RenderFlow::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); } bool RenderBlock::containsFloat(RenderObject* o) { if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while (it.current()) { if (it.current()->node == o) return true; ++it; } } return false; } void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderObject* floatToRemove) { setChildNeedsLayout(true); if (floatToRemove) removeFloatingObject(floatToRemove); // Iterate over our children and mark them as needed. if (!childrenInline()) { for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (isBlockFlow() && !child->isFloatingOrPositioned() && ((floatToRemove ? child->containsFloat(floatToRemove) : child->containsFloats()) || child->shrinkToAvoidFloats())) child->markAllDescendantsWithFloatsForLayout(floatToRemove); } } } int RenderBlock::getClearDelta(RenderObject *child) { // There is no need to compute clearance if we have no floats. if (!containsFloats()) return 0; // At least one float is present. We need to perform the clearance computation. bool clearSet = child->style()->clear() != CNONE; int bottom = 0; switch (child->style()->clear()) { case CNONE: break; case CLEFT: bottom = leftBottom(); break; case CRIGHT: bottom = rightBottom(); break; case CBOTH: bottom = floatBottom(); break; } // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). // FIXME: Note that the remaining space checks aren't quite accurate, since you should be able to clear only some floats (the minimum # needed // to fit) and not all (we should be using nearestFloatBottom and looping). // Do not allow tables to wrap in quirks or even in almost strict mode // (ebay on the PLT, finance.yahoo.com in the real world, versiontracker.com forces even almost strict mode not to work) int result = clearSet ? max(0, bottom - child->yPos()) : 0; if (!result && child->avoidsFloats() && child->style()->width().isFixed() && child->minPrefWidth() > lineWidth(child->yPos()) && child->minPrefWidth() <= availableWidth() && document()->inStrictMode()) result = max(0, floatBottom() - child->yPos()); return result; } void RenderBlock::addVisualOverflow(const IntRect& r) { if (r.isEmpty()) return; m_overflowLeft = min(m_overflowLeft, r.x()); m_overflowWidth = max(m_overflowWidth, r.right()); m_overflowTop = min(m_overflowTop, r.y()); m_overflowHeight = max(m_overflowHeight, r.bottom()); } bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty) { if (!scrollsOverflow()) return false; return layer()->hitTestOverflowControls(result); } bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction) { bool inlineFlow = isInlineFlow(); int tx = _tx + m_x; int ty = _ty + m_y + borderTopExtra(); if (!inlineFlow && !isRenderView()) { // Check if we need to do anything at all. IntRect overflowBox = overflowRect(false); overflowBox.move(tx, ty); if (!overflowBox.contains(_x, _y)) return false; } if (isPointInOverflowControl(result, _x, _y, tx, ty)) { if (hitTestAction == HitTestBlockBackground) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); return true; } return false; } // If we have lightweight control clipping, then we can't have any spillout. if (!hasControlClip() || controlClipRect(tx, ty).contains(_x, _y)) { // Hit test descendants first. int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) m_layer->subtractScrollOffset(scrolledX, scrolledY); // Hit test contents if we don't have columns. if (!m_hasColumns && hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) return true; // Hit test our columns if we do have them. if (m_hasColumns && hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) return true; // Hit test floats. if (hitTestAction == HitTestFloat && m_floatingObjects) { if (isRenderView()) { scrolledX += static_cast(this)->frameView()->contentsX(); scrolledY += static_cast(this)->frameView()->contentsY(); } FloatingObject* o; DeprecatedPtrListIterator it(*m_floatingObjects); for (it.toLast(); (o = it.current()); --it) { if (!o->noPaint && !o->node->hasLayer()) { int xoffset = scrolledX + o->left + o->node->marginLeft() - o->node->xPos(); int yoffset = scrolledY + o->startY + o->node->marginTop() - o->node->yPos(); if (o->node->hitTest(request, result, IntPoint(_x, _y), xoffset, yoffset)) { updateHitTestResult(result, IntPoint(_x - xoffset, _y - yoffset)); return true; } } } } } // Now hit test our background. if (!inlineFlow && (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground)) { int topExtra = borderTopExtra(); IntRect boundsRect(tx, ty - topExtra, m_width, m_height + topExtra + borderBottomExtra()); if (style()->visibility() == VISIBLE && boundsRect.contains(_x, _y)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty + topExtra)); return true; } } return false; } bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { // We need to do multiple passes, breaking up our hit testing into strips. // We can always go left to right, since column contents are clipped (meaning that there // can't be any overlap). int currXOffset = 0; int currYOffset = 0; int colGap = columnGap(); Vector* colRects = columnRects(); for (unsigned i = 0; i < colRects->size(); i++) { IntRect colRect = colRects->at(i); colRect.move(tx, ty); if (colRect.contains(x, y)) { // The point is inside this column. // Adjust tx and ty to change where we hit test. int finalX = tx + currXOffset; int finalY = ty + currYOffset; return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction); } // Move to the next position. if (style()->direction() == LTR) currXOffset += colRect.width() + colGap; else currXOffset -= (colRect.width() + colGap); currYOffset -= colRect.height(); } return false; } bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { if (childrenInline() && !isTable()) { // We have to hit-test our line boxes. if (hitTestLines(request, result, x, y, tx, ty, hitTestAction)) { updateHitTestResult(result, IntPoint(x - tx, y - ty)); return true; } } else { // Hit test our children. HitTestAction childHitTest = hitTestAction; if (hitTestAction == HitTestChildBlockBackgrounds) childHitTest = HitTestChildBlockBackground; for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { // FIXME: We have to skip over inline flows, since they can show up inside RenderTables at the moment (a demoted inline for example). If we ever implement a // table-specific hit-test method (which we should do for performance reasons anyway), then we can remove this check. if (!child->hasLayer() && !child->isFloating() && !child->isInlineFlow() && child->nodeAtPoint(request, result, x, y, tx, ty, childHitTest)) { updateHitTestResult(result, IntPoint(x - tx, y - ty)); return true; } } } return false; } Position RenderBlock::positionForBox(InlineBox *box, bool start) const { if (!box) return Position(); if (!box->object()->element()) return Position(element(), start ? caretMinOffset() : caretMaxOffset()); if (!box->isInlineTextBox()) return Position(box->object()->element(), start ? box->object()->caretMinOffset() : box->object()->caretMaxOffset()); InlineTextBox *textBox = static_cast(box); return Position(box->object()->element(), start ? textBox->start() : textBox->start() + textBox->len()); } Position RenderBlock::positionForRenderer(RenderObject* renderer, bool start) const { if (!renderer) return Position(element(), 0); Node* node = renderer->element() ? renderer->element() : element(); if (!node) return Position(); ASSERT(renderer == node->renderer()); int offset = start ? renderer->caretMinOffset() : renderer->caretMaxOffset(); // FIXME: This was a runtime check that seemingly couldn't fail; changed it to an assertion for now. ASSERT(!node->isCharacterDataNode() || renderer->isText()); return Position(node, offset); } VisiblePosition RenderBlock::positionForCoordinates(int x, int y) { if (isTable()) return RenderFlow::positionForCoordinates(x, y); int top = borderTop(); int bottom = top + borderTopExtra() + paddingTop() + contentHeight() + paddingBottom() + borderBottomExtra(); int left = borderLeft(); int right = left + paddingLeft() + contentWidth() + paddingRight(); Node* n = element(); int contentsX = x; int contentsY = y - borderTopExtra(); if (hasOverflowClip()) m_layer->scrollOffset(contentsX, contentsY); if (m_hasColumns) { IntPoint contentsPoint(contentsX, contentsY); adjustPointToColumnContents(contentsPoint); contentsX = contentsPoint.x(); contentsY = contentsPoint.y(); } if (isReplaced()) { if (y < 0 || y < height() && x < 0) return VisiblePosition(n, caretMinOffset(), DOWNSTREAM); if (y >= height() || y >= 0 && x >= width()) return VisiblePosition(n, caretMaxOffset(), DOWNSTREAM); } // If we start inside the shadow tree, we will stay inside (even if the point is above or below). if (!(n && n->isShadowNode()) && !childrenInline()) { // Don't return positions inside editable roots for coordinates outside those roots, except for coordinates outside // a document that is entirely editable. bool isEditableRoot = n && n->rootEditableElement() == n && !n->hasTagName(bodyTag) && !n->hasTagName(htmlTag); if (y < top || (isEditableRoot && (y < bottom && x < left))) { if (!isEditableRoot) if (RenderObject* c = firstChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, etc. VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos()); if (p.isNotNull()) return p; } if (n) { if (Node* sp = n->shadowParentNode()) n = sp; if (Node* p = n->parent()) return VisiblePosition(p, n->nodeIndex(), DOWNSTREAM); } return VisiblePosition(n, 0, DOWNSTREAM); } if (y >= bottom || (isEditableRoot && (y >= top && x >= right))) { if (!isEditableRoot) if (RenderObject* c = lastChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, ect. VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos()); if (p.isNotNull()) return p; } if (n) { if (Node* sp = n->shadowParentNode()) n = sp; if (Node* p = n->parent()) return VisiblePosition(p, n->nodeIndex() + 1, DOWNSTREAM); } return VisiblePosition(n, 0, DOWNSTREAM); } } if (childrenInline()) { if (!firstRootBox()) return VisiblePosition(n, 0, DOWNSTREAM); if (contentsY < firstRootBox()->topOverflow() - verticalLineClickFudgeFactor) // y coordinate is above first root line box return VisiblePosition(positionForBox(firstRootBox()->firstLeafChild(), true), DOWNSTREAM); // look for the closest line box in the root box which is at the passed-in y coordinate for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { // set the bottom based on whether there is a next root box if (root->nextRootBox()) // FIXME: make the break point halfway between the bottom of the previous root box and the top of the next root box bottom = root->nextRootBox()->topOverflow(); else bottom = root->bottomOverflow() + verticalLineClickFudgeFactor; // check if this root line box is located at this y coordinate if (contentsY < bottom && root->firstChild()) { InlineBox* closestBox = root->closestLeafChildForXPos(x); if (closestBox) // pass the box a y position that is inside it return closestBox->object()->positionForCoordinates(contentsX, closestBox->m_y); } } if (lastRootBox()) // y coordinate is below last root line box return VisiblePosition(positionForBox(lastRootBox()->lastLeafChild(), false), DOWNSTREAM); return VisiblePosition(n, 0, DOWNSTREAM); } // See if any child blocks exist at this y coordinate. if (firstChild() && contentsY < firstChild()->yPos()) return VisiblePosition(n, 0, DOWNSTREAM); for (RenderObject* renderer = firstChild(); renderer; renderer = renderer->nextSibling()) { if (renderer->height() == 0 || renderer->style()->visibility() != VISIBLE || renderer->isFloatingOrPositioned()) continue; RenderObject* next = renderer->nextSibling(); while (next && next->isFloatingOrPositioned()) next = next->nextSibling(); if (next) bottom = next->yPos(); else bottom = top + scrollHeight(); if (contentsY >= renderer->yPos() && contentsY < bottom) return renderer->positionForCoordinates(contentsX - renderer->xPos(), contentsY - renderer->yPos()); } return RenderFlow::positionForCoordinates(x, y); } int RenderBlock::availableWidth() const { // If we have multiple columns, then the available width is reduced to our column width. if (m_hasColumns) return desiredColumnWidth(); return contentWidth(); } int RenderBlock::columnGap() const { if (style()->hasNormalColumnGap()) return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches

margins. return static_cast(style()->columnGap()); } void RenderBlock::calcColumnWidth() { // Calculate our column width and column count. unsigned desiredColumnCount = 1; int desiredColumnWidth = contentWidth(); // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. if (document()->printing() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) { setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); return; } int availWidth = desiredColumnWidth; int colGap = columnGap(); int colWidth = max(1, static_cast(style()->columnWidth())); int colCount = max(1, static_cast(style()->columnCount())); if (style()->hasAutoColumnWidth()) { if ((colCount - 1) * colGap < availWidth) { desiredColumnCount = colCount; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } else if (colGap < availWidth) { desiredColumnCount = availWidth / colGap; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } else if (style()->hasAutoColumnCount()) { if (colWidth < availWidth) { desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } else { // Both are set. if (colCount * colWidth + (colCount - 1) * colGap <= availWidth) { desiredColumnCount = colCount; desiredColumnWidth = colWidth; } else if (colWidth < availWidth) { desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); } void RenderBlock::setDesiredColumnCountAndWidth(int count, int width) { if (count == 1) { if (m_hasColumns) { delete gColumnInfoMap->take(this); m_hasColumns = false; } } else { ColumnInfo* info; if (m_hasColumns) info = gColumnInfoMap->get(this); else { if (!gColumnInfoMap) gColumnInfoMap = new ColumnInfoMap; info = new ColumnInfo; gColumnInfoMap->add(this, info); m_hasColumns = true; } info->m_desiredColumnCount = count; info->m_desiredColumnWidth = width; } } int RenderBlock::desiredColumnWidth() const { if (!m_hasColumns) return contentWidth(); return gColumnInfoMap->get(this)->m_desiredColumnWidth; } unsigned RenderBlock::desiredColumnCount() const { if (!m_hasColumns) return 1; return gColumnInfoMap->get(this)->m_desiredColumnCount; } Vector* RenderBlock::columnRects() const { if (!m_hasColumns) return 0; return &gColumnInfoMap->get(this)->m_columnRects; } int RenderBlock::layoutColumns(int endOfContent) { // Don't do anything if we have no columns if (!m_hasColumns) return -1; ColumnInfo* info = gColumnInfoMap->get(this); int desiredColumnWidth = info->m_desiredColumnWidth; int desiredColumnCount = info->m_desiredColumnCount; Vector* columnRects = &info->m_columnRects; bool computeIntrinsicHeight = (endOfContent == -1); // Fill the columns in to the available height. Attempt to balance the height of the columns int availableHeight = contentHeight(); int colHeight = computeIntrinsicHeight ? availableHeight / desiredColumnCount : availableHeight; // Add in half our line-height to help with best-guess initial balancing. int columnSlop = lineHeight(false) / 2; int remainingSlopSpace = columnSlop * desiredColumnCount; if (computeIntrinsicHeight) colHeight += columnSlop; int colGap = columnGap(); // Compute a collection of column rects. columnRects->clear(); // Then we do a simulated "paint" into the column slices and allow the content to slightly adjust our individual column rects. // FIXME: We need to take into account layers that are affected by the columns as well here so that they can have an opportunity // to adjust column rects also. RenderView* v = view(); int left = borderLeft() + paddingLeft(); int top = borderTop() + paddingTop(); int currX = style()->direction() == LTR ? borderLeft() + paddingLeft() : borderLeft() + paddingLeft() + contentWidth() - desiredColumnWidth; int currY = top; unsigned colCount = desiredColumnCount; int maxColBottom = borderTop() + paddingTop(); int contentBottom = top + availableHeight; for (unsigned i = 0; i < colCount; i++) { // If we aren't constrained, then the last column can just get all the remaining space. if (computeIntrinsicHeight && i == colCount - 1) colHeight = availableHeight; // This represents the real column position. IntRect colRect(currX, top, desiredColumnWidth, colHeight); // For the simulated paint, we pretend like everything is in one long strip. IntRect pageRect(left, currY, desiredColumnWidth, colHeight); v->setPrintRect(pageRect); v->setTruncatedAt(currY + colHeight); GraphicsContext context((PlatformGraphicsContext*)0); RenderObject::PaintInfo paintInfo(&context, pageRect, PaintPhaseForeground, false, 0, 0); m_hasColumns = false; paintObject(paintInfo, 0, 0); m_hasColumns = true; int adjustedBottom = v->bestTruncatedAt(); if (adjustedBottom <= currY) adjustedBottom = currY + colHeight; colRect.setHeight(adjustedBottom - currY); // Add in the lost space to the subsequent columns. // FIXME: This will create a "staircase" effect if there are enough columns, but the effect should be pretty subtle. if (computeIntrinsicHeight) { int lostSpace = colHeight - colRect.height(); if (lostSpace > remainingSlopSpace) { // Redestribute the space among the remaining columns. int spaceToRedistribute = lostSpace - remainingSlopSpace; int remainingColumns = colCount - i + 1; colHeight += spaceToRedistribute / remainingColumns; } remainingSlopSpace = max(0, remainingSlopSpace - lostSpace); } if (style()->direction() == LTR) currX += desiredColumnWidth + colGap; else currX -= (desiredColumnWidth + colGap); currY += colRect.height(); availableHeight -= colRect.height(); maxColBottom = max(colRect.bottom(), maxColBottom); columnRects->append(colRect); // Start adding in more columns as long as there's still content left. if (currY < endOfContent && i == colCount - 1) colCount++; } m_overflowWidth = max(m_width, currX - colGap); m_overflowLeft = min(0, currX + desiredColumnWidth + colGap); m_overflowHeight = maxColBottom; int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); if (computeIntrinsicHeight) m_height = m_overflowHeight + toAdd; v->setPrintRect(IntRect()); v->setTruncatedAt(0); ASSERT(colCount == columnRects->size()); return contentBottom; } void RenderBlock::adjustPointToColumnContents(IntPoint& point) const { // Just bail if we have no columns. if (!m_hasColumns) return; Vector* colRects = columnRects(); // Determine which columns we intersect. int colGap = columnGap(); int leftGap = colGap / 2; IntPoint columnPoint(colRects->at(0).location()); int yOffset = 0; for (unsigned i = 0; i < colRects->size(); i++) { // Add in half the column gap to the left and right of the rect. IntRect colRect = colRects->at(i); IntRect gapAndColumnRect(colRect.x() - leftGap, colRect.y(), colRect.width() + colGap, colRect.height()); if (gapAndColumnRect.contains(point)) { // We're inside the column. Translate the x and y into our column coordinate space. point.move(columnPoint.x() - colRect.x(), yOffset); return; } // Move to the next position. yOffset += colRect.height(); } } void RenderBlock::adjustRectForColumns(IntRect& r) const { // Just bail if we have no columns. if (!m_hasColumns) return; Vector* colRects = columnRects(); // Begin with a result rect that is empty. IntRect result; // Determine which columns we intersect. int currXOffset = 0; int currYOffset = 0; int colGap = columnGap(); for (unsigned i = 0; i < colRects->size(); i++) { IntRect colRect = colRects->at(i); IntRect repaintRect = r; repaintRect.move(currXOffset, currYOffset); repaintRect.intersect(colRect); result.unite(repaintRect); // Move to the next position. if (style()->direction() == LTR) currXOffset += colRect.width() + colGap; else currXOffset -= (colRect.width() + colGap); currYOffset -= colRect.height(); } r = result; } void RenderBlock::calcPrefWidths() { ASSERT(prefWidthsDirty()); updateFirstLetter(); if (!isTableCell() && style()->width().isFixed() && style()->width().value() > 0) m_minPrefWidth = m_maxPrefWidth = calcContentBoxWidth(style()->width().value()); else { m_minPrefWidth = 0; m_maxPrefWidth = 0; if (childrenInline()) calcInlinePrefWidths(); else calcBlockPrefWidths(); m_maxPrefWidth = max(m_minPrefWidth, m_maxPrefWidth); if (!style()->autoWrap() && childrenInline()) { m_minPrefWidth = m_maxPrefWidth; // A horizontal marquee with inline children has no minimum width. if (m_layer && m_layer->marquee() && m_layer->marquee()->isHorizontal()) m_minPrefWidth = 0; } if (isTableCell()) { Length w = static_cast(this)->styleOrColWidth(); if (w.isFixed() && w.value() > 0) m_maxPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(w.value())); } } if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) { m_maxPrefWidth = max(m_maxPrefWidth, calcContentBoxWidth(style()->minWidth().value())); m_minPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(style()->minWidth().value())); } if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) { m_maxPrefWidth = min(m_maxPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); m_minPrefWidth = min(m_minPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); } int toAdd = 0; toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight(); m_minPrefWidth += toAdd; m_maxPrefWidth += toAdd; setPrefWidthsDirty(false); } struct InlineMinMaxIterator { /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to inline min/max width calculations. Note the following about the way it walks: (1) Positioned content is skipped (since it does not contribute to min/max width of a block) (2) We do not drill into the children of floats or replaced elements, since you can't break in the middle of such an element. (3) Inline flows (e.g., , , ) are walked twice, since each side can have distinct borders/margin/padding that contribute to the min/max width. */ RenderObject* parent; RenderObject* current; bool endOfInline; InlineMinMaxIterator(RenderObject* p, bool end = false) :parent(p), current(p), endOfInline(end) {} RenderObject* next(); }; RenderObject* InlineMinMaxIterator::next() { RenderObject* result = 0; bool oldEndOfInline = endOfInline; endOfInline = false; while (current || current == parent) { if (!oldEndOfInline && (current == parent || (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) result = current->firstChild(); if (!result) { // We hit the end of our inline. (It was empty, e.g., .) if (!oldEndOfInline && current->isInlineFlow()) { result = current; endOfInline = true; break; } while (current && current != parent) { result = current->nextSibling(); if (result) break; current = current->parent(); if (current && current != parent && current->isInlineFlow()) { result = current; endOfInline = true; break; } } } if (!result) break; if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isInlineFlow())) break; current = result; result = 0; } // Update our position. current = result; return current; } static int getBPMWidth(int childValue, Length cssUnit) { if (cssUnit.type() != Auto) return (cssUnit.isFixed() ? cssUnit.value() : childValue); return 0; } static int getBorderPaddingMargin(const RenderObject* child, bool endOfInline) { RenderStyle* cstyle = child->style(); int result = 0; bool leftSide = (cstyle->direction() == LTR) ? !endOfInline : endOfInline; result += getBPMWidth((leftSide ? child->marginLeft() : child->marginRight()), (leftSide ? cstyle->marginLeft() : cstyle->marginRight())); result += getBPMWidth((leftSide ? child->paddingLeft() : child->paddingRight()), (leftSide ? cstyle->paddingLeft() : cstyle->paddingRight())); result += leftSide ? child->borderLeft() : child->borderRight(); return result; } static inline void stripTrailingSpace(int& inlineMax, int& inlineMin, RenderObject* trailingSpaceChild) { if (trailingSpaceChild && trailingSpaceChild->isText()) { // Collapse away the trailing space at the end of a block. RenderText* t = static_cast(trailingSpaceChild); const UChar space = ' '; const Font& font = t->style()->font(); // FIXME: This ignores first-line. int spaceWidth = font.width(TextRun(&space, 1)); inlineMax -= spaceWidth + font.wordSpacing(); if (inlineMin > inlineMax) inlineMin = inlineMax; } } void RenderBlock::calcInlinePrefWidths() { int inlineMax = 0; int inlineMin = 0; int cw = containingBlock()->contentWidth(); // If we are at the start of a line, we want to ignore all white-space. // Also strip spaces if we previously had text that ended in a trailing space. bool stripFrontSpaces = true; RenderObject* trailingSpaceChild = 0; // Firefox and Opera will allow a table cell to grow to fit an image inside it under // very specific cirucumstances (in order to match common WinIE renderings). // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) bool allowImagesToBreak = !style()->htmlHacks() || !isTableCell() || !style()->width().isIntrinsicOrAuto(); bool autoWrap, oldAutoWrap; autoWrap = oldAutoWrap = style()->autoWrap(); InlineMinMaxIterator childIterator(this); bool addedTextIndent = false; // Only gets added in once. RenderObject* prevFloat = 0; RenderObject* previousLeaf = 0; while (RenderObject* child = childIterator.next()) { autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : child->style()->autoWrap(); if (!child->isBR()) { // Step One: determine whether or not we need to go ahead and // terminate our current line. Each discrete chunk can become // the new min-width, if it is the widest chunk seen so far, and // it can also become the max-width. // Children fall into three categories: // (1) An inline flow object. These objects always have a min/max of 0, // and are included in the iteration solely so that their margins can // be added in. // // (2) An inline non-text non-flow object, e.g., an inline replaced element. // These objects can always be on a line by themselves, so in this situation // we need to go ahead and break the current line, and then add in our own // margins and min/max width on its own line, and then terminate the line. // // (3) A text object. Text runs can have breakable characters at the start, // the middle or the end. They may also lose whitespace off the front if // we're already ignoring whitespace. In order to compute accurate min-width // information, we need three pieces of information. // (a) the min-width of the first non-breakable run. Should be 0 if the text string // starts with whitespace. // (b) the min-width of the last non-breakable run. Should be 0 if the text string // ends with whitespace. // (c) the min/max width of the string (trimmed for whitespace). // // If the text string starts with whitespace, then we need to go ahead and // terminate our current line (unless we're already in a whitespace stripping // mode. // // If the text string has a breakable character in the middle, but didn't start // with whitespace, then we add the width of the first non-breakable run and // then end the current line. We then need to use the intermediate min/max width // values (if any of them are larger than our current min/max). We then look at // the width of the last non-breakable run and use that to start a new line // (unless we end in whitespace). RenderStyle* cstyle = child->style(); int childMin = 0; int childMax = 0; if (!child->isText()) { // Case (1) and (2). Inline replaced and inline flow elements. if (child->isInlineFlow()) { // Add in padding/border/margin from the appropriate side of // the element. int bpm = getBorderPaddingMargin(child, childIterator.endOfInline); childMin += bpm; childMax += bpm; inlineMin += childMin; inlineMax += childMax; child->setPrefWidthsDirty(false); } else { // Inline replaced elts add in their margins to their min/max values. int margins = 0; Length leftMargin = cstyle->marginLeft(); Length rightMargin = cstyle->marginRight(); if (leftMargin.isFixed()) margins += leftMargin.value(); if (rightMargin.isFixed()) margins += rightMargin.value(); childMin += margins; childMax += margins; } } if (!child->isRenderInline() && !child->isText()) { // Case (2). Inline replaced elements and floats. // Go ahead and terminate the current line as far as // minwidth is concerned. childMin += child->minPrefWidth(); childMax += child->maxPrefWidth(); bool clearPreviousFloat; if (child->isFloating()) { clearPreviousFloat = (prevFloat && (prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT) || prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT))); prevFloat = child; } else clearPreviousFloat = false; bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; if (canBreakReplacedElement && (autoWrap || oldAutoWrap) || clearPreviousFloat) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } // If we're supposed to clear the previous float, then terminate maxwidth as well. if (clearPreviousFloat) { m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); inlineMax = 0; } // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin+=ti; childMax+=ti; } // Add our width to the max. inlineMax += childMax; if (!autoWrap || !canBreakReplacedElement) inlineMin += childMin; else inlineMin = childMin; if (autoWrap && canBreakReplacedElement) { // Now check our line. m_minPrefWidth = max(inlineMin, m_minPrefWidth); // Now start a new line. inlineMin = 0; } // We are no longer stripping whitespace at the start of // a line. if (!child->isFloating()) { stripFrontSpaces = false; trailingSpaceChild = 0; } } else if (child->isText()) { // Case (3). Text. RenderText* t = static_cast(child); if (t->isWordBreak()) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; continue; } // Determine if we have a breakable character. Pass in // whether or not we should ignore any spaces at the front // of the string. If those are going to be stripped out, // then they shouldn't be considered in the breakable char // check. bool hasBreakableChar, hasBreak; int beginMin, endMin; bool beginWS, endWS; int beginMax, endMax; t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, hasBreakableChar, hasBreak, beginMax, endMax, childMin, childMax, stripFrontSpaces); // This text object will not be rendered, but it may still provide a breaking opportunity. if (!hasBreak && childMax == 0) { if (autoWrap && (beginWS || endWS)) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } continue; } if (stripFrontSpaces) trailingSpaceChild = child; else trailingSpaceChild = 0; // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin+=ti; beginMin += ti; childMax+=ti; beginMax += ti; } // If we have no breakable characters at all, // then this is the easy case. We add ourselves to the current // min and max and continue. if (!hasBreakableChar) { inlineMin += childMin; } else { // We have a breakable character. Now we need to know if // we start and end with whitespace. if (beginWS) // Go ahead and end the current line. m_minPrefWidth = max(inlineMin, m_minPrefWidth); else { inlineMin += beginMin; m_minPrefWidth = max(inlineMin, m_minPrefWidth); childMin -= ti; } inlineMin = childMin; if (endWS) { // We end in whitespace, which means we can go ahead // and end our current line. m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } else { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = endMin; } } if (hasBreak) { inlineMax += beginMax; m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); m_maxPrefWidth = max(childMax, m_maxPrefWidth); inlineMax = endMax; } else inlineMax += childMax; } } else { m_minPrefWidth = max(inlineMin, m_minPrefWidth); m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); inlineMin = inlineMax = 0; stripFrontSpaces = true; trailingSpaceChild = 0; } oldAutoWrap = autoWrap; if (!child->isInlineFlow()) previousLeaf = child; } if (style()->collapseWhiteSpace()) stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); m_minPrefWidth = max(inlineMin, m_minPrefWidth); m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); } // Use a very large value (in effect infinite). #define BLOCK_MAX_WIDTH 15000 void RenderBlock::calcBlockPrefWidths() { bool nowrap = style()->whiteSpace() == NOWRAP; RenderObject *child = firstChild(); int floatLeftWidth = 0, floatRightWidth = 0; while (child) { // Positioned children don't affect the min/max width if (child->isPositioned()) { child = child->nextSibling(); continue; } if (child->isFloating() || child->avoidsFloats()) { int floatTotalWidth = floatLeftWidth + floatRightWidth; if (child->style()->clear() & CLEFT) { m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); floatLeftWidth = 0; } if (child->style()->clear() & CRIGHT) { m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); floatRightWidth = 0; } } // A margin basically has three types: fixed, percentage, and auto (variable). // Auto and percentage margins simply become 0 when computing min/max width. // Fixed margins can be added in as is. Length ml = child->style()->marginLeft(); Length mr = child->style()->marginRight(); int margin = 0, marginLeft = 0, marginRight = 0; if (ml.isFixed()) marginLeft += ml.value(); if (mr.isFixed()) marginRight += mr.value(); margin = marginLeft + marginRight; int w = child->minPrefWidth() + margin; m_minPrefWidth = max(w, m_minPrefWidth); // IE ignores tables for calculation of nowrap. Makes some sense. if (nowrap && !child->isTable()) m_maxPrefWidth = max(w, m_maxPrefWidth); w = child->maxPrefWidth() + margin; if (!child->isFloating()) { if (child->avoidsFloats()) { // Determine a left and right max value based off whether or not the floats can fit in the // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin // is smaller than the float width. int maxLeft = marginLeft > 0 ? max(floatLeftWidth, marginLeft) : floatLeftWidth + marginLeft; int maxRight = marginRight > 0 ? max(floatRightWidth, marginRight) : floatRightWidth + marginRight; w = child->maxPrefWidth() + maxLeft + maxRight; w = max(w, floatLeftWidth + floatRightWidth); } else m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); floatLeftWidth = floatRightWidth = 0; } if (child->isFloating()) { if (style()->floating() == FLEFT) floatLeftWidth += w; else floatRightWidth += w; } else m_maxPrefWidth = max(w, m_maxPrefWidth); // A very specific WinIE quirk. // Example: /*

*/ // In the above example, the inner absolute positioned block should have a computed width // of 100px because of the table. // We can achieve this effect by making the maxwidth of blocks that contain tables // with percentage widths be infinite (as long as they are not inside a table cell). if (style()->htmlHacks() && child->style()->width().isPercent() && !isTableCell() && child->isTable() && m_maxPrefWidth < BLOCK_MAX_WIDTH) { RenderBlock* cb = containingBlock(); while (!cb->isRenderView() && !cb->isTableCell()) cb = cb->containingBlock(); if (!cb->isTableCell()) m_maxPrefWidth = BLOCK_MAX_WIDTH; } child = child->nextSibling(); } // Always make sure these values are non-negative. m_minPrefWidth = max(0, m_minPrefWidth); m_maxPrefWidth = max(0, m_maxPrefWidth); m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); } bool RenderBlock::hasLineIfEmpty() const { return element() && (element()->isContentEditable() && element()->rootEditableElement() == element() || element()->isShadowNode() && element()->shadowParentNode()->hasTagName(inputTag)); } short RenderBlock::lineHeight(bool b, bool isRootLineBox) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && !isRootLineBox) return height()+marginTop()+marginBottom(); return RenderFlow::lineHeight(b, isRootLineBox); } short RenderBlock::baselinePosition(bool b, bool isRootLineBox) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && !isRootLineBox) { // For "leaf" theme objects, let the theme decide what the baseline position is. // FIXME: Might be better to have a custom CSS property instead, so that if the theme // is turned off, checkboxes/radios will still have decent baselines. if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) return theme()->baselinePosition(this); // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in // the normal flow. We make an exception for marquees, since their baselines are meaningless // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside // of our content box. int baselinePos = (m_layer && (m_layer->marquee() || m_layer->verticalScrollbar() || m_layer->scrollYOffset() != 0)) ? -1 : getBaselineOfLastLineBox(); if (baselinePos != -1 && baselinePos <= borderTop() + paddingTop() + contentHeight()) return marginTop() + baselinePos; return height() + marginTop() + marginBottom(); } return RenderFlow::baselinePosition(b, isRootLineBox); } int RenderBlock::getBaselineOfFirstLineBox() const { if (!isBlockFlow()) return RenderFlow::getBaselineOfFirstLineBox(); if (childrenInline()) { if (firstLineBox()) return firstLineBox()->yPos() + firstLineBox()->baseline(); else return -1; } else { for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { if (!curr->isFloatingOrPositioned()) { int result = curr->getBaselineOfFirstLineBox(); if (result != -1) return curr->yPos() + result; // Translate to our coordinate space. } } } return -1; } int RenderBlock::getBaselineOfLastLineBox() const { if (!isBlockFlow()) return RenderFlow::getBaselineOfLastLineBox(); if (childrenInline()) { if (!firstLineBox() && hasLineIfEmpty()) return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop(); if (lastLineBox()) return lastLineBox()->yPos() + lastLineBox()->baseline(); return -1; } else { bool haveNormalFlowChild = false; for (RenderObject* curr = lastChild(); curr; curr = curr->previousSibling()) { if (!curr->isFloatingOrPositioned()) { haveNormalFlowChild = true; int result = curr->getBaselineOfLastLineBox(); if (result != -1) return curr->yPos() + result; // Translate to our coordinate space. } } if (!haveNormalFlowChild && hasLineIfEmpty()) return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop(); } return -1; } RenderBlock* RenderBlock::firstLineBlock() const { const RenderObject* firstLineBlock = this; bool hasPseudo = false; while (true) { hasPseudo = firstLineBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LINE); if (hasPseudo) break; RenderObject* parentBlock = firstLineBlock->parent(); if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) break; firstLineBlock = parentBlock; } if (!hasPseudo) return 0; return (RenderBlock*)(firstLineBlock); } void RenderBlock::updateFirstLetter() { if (!document()->usesFirstLetterRules()) return; // Don't recurse if (style()->styleType() == RenderStyle::FIRST_LETTER) return; // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find // an efficient way to check for that situation though before implementing anything. RenderObject* firstLetterBlock = this; bool hasPseudoStyle = false; while (true) { // We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly // prevents form controls from honoring first-letter. hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LETTER) && firstLetterBlock->canHaveChildren(); if (hasPseudoStyle) break; RenderObject* parentBlock = firstLetterBlock->parent(); if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || !parentBlock->isBlockFlow()) break; firstLetterBlock = parentBlock; } if (!hasPseudoStyle) return; // Drill into inlines looking for our first text child. RenderObject* currChild = firstLetterBlock->firstChild(); while (currChild && currChild->needsLayout() && !currChild->isReplaced() && !currChild->isText()) currChild = currChild->firstChild(); // Get list markers out of the way. while (currChild && currChild->isListMarker()) currChild = currChild->nextSibling(); if (!currChild) return; RenderObject* firstLetterContainer = currChild->parent(); // If the child already has style, then it has already been created, so we just want // to update it. if (currChild->style()->styleType() == RenderStyle::FIRST_LETTER) { RenderStyle* pseudo = firstLetterBlock->getPseudoStyle(RenderStyle::FIRST_LETTER, firstLetterContainer->firstLineStyle()); currChild->setStyle(pseudo); for (RenderObject* genChild = currChild->firstChild(); genChild; genChild = genChild->nextSibling()) { if (genChild->isText()) genChild->setStyle(pseudo); } return; } // If the child does not already have style, we create it here. if (currChild->isText() && !currChild->isBR() && currChild->parent()->style()->styleType() != RenderStyle::FIRST_LETTER) { // Our layout state is not valid for the repaints we are going to trigger by // adding and removing children of firstLetterContainer. view()->disableLayoutState(); RenderText* textObj = static_cast(currChild); // Create our pseudo style now that we have our firstLetterContainer determined. RenderStyle* pseudoStyle = firstLetterBlock->getPseudoStyle(RenderStyle::FIRST_LETTER, firstLetterContainer->firstLineStyle()); // Force inline display (except for floating first-letters) pseudoStyle->setDisplay( pseudoStyle->isFloating() ? BLOCK : INLINE); pseudoStyle->setPosition( StaticPosition ); // CSS2 says first-letter can't be positioned. RenderObject* firstLetter = RenderFlow::createAnonymousFlow(document(), pseudoStyle); // anonymous box // FIXME: This adds in the wrong place if list markers were skipped above. Should be // firstLetterContainer->addChild(firstLetter, currChild); firstLetterContainer->addChild(firstLetter, firstLetterContainer->firstChild()); // The original string is going to be either a generated content string or a DOM node's // string. We want the original string before it got transformed in case first-letter has // no text-transform or a different text-transform applied to it. RefPtr oldText = textObj->originalText(); ASSERT(oldText); if (oldText && oldText->length() > 0) { unsigned int length = 0; // account for leading spaces and punctuation while (length < oldText->length() && (isSpaceOrNewline((*oldText)[length]) || Unicode::isPunct((*oldText)[length]))) length++; // account for first letter length++; // construct text fragment for the text after the first letter // NOTE: this might empty RenderTextFragment* remainingText = new (renderArena()) RenderTextFragment(textObj->node(), oldText.get(), length, oldText->length() - length); remainingText->setStyle(textObj->style()); if (remainingText->element()) remainingText->element()->setRenderer(remainingText); RenderObject* nextObj = textObj->nextSibling(); firstLetterContainer->removeChild(textObj); firstLetterContainer->addChild(remainingText, nextObj); remainingText->setFirstLetter(firstLetter); // construct text fragment for the first letter RenderTextFragment* letter = new (renderArena()) RenderTextFragment(remainingText->node(), oldText.get(), 0, length); RenderStyle* newStyle = new (renderArena()) RenderStyle(); newStyle->inheritFrom(pseudoStyle); letter->setStyle(newStyle); firstLetter->addChild(letter); textObj->destroy(); } view()->enableLayoutState(); } } bool RenderBlock::inRootBlockContext() const { if (isTableCell() || isFloatingOrPositioned() || hasOverflowClip()) return false; if (isRoot() || isRenderView()) return true; return containingBlock()->inRootBlockContext(); } // Helper methods for obtaining the last line, computing line counts and heights for line counts // (crawling into blocks). static bool shouldCheckLines(RenderObject* obj) { return !obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn() && obj->isBlockFlow() && obj->style()->height().isAuto() && (!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL); } static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (count++ == i) return box; } } else { for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) { RootInlineBox *box = getLineAtIndex(static_cast(obj), i, count); if (box) return box; } } } } return 0; } int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (++count == l) return box->bottomOverflow() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } } else { RenderObject* normalFlowChildWithoutLines = 0; for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) { int result = getHeightForLineCount(static_cast(obj), l, false, count); if (result != -1) return result + obj->yPos() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } else if (!obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn()) normalFlowChildWithoutLines = obj; } if (normalFlowChildWithoutLines && l == 0) return normalFlowChildWithoutLines->yPos() + normalFlowChildWithoutLines->height(); } } return -1; } RootInlineBox* RenderBlock::lineAtIndex(int i) { int count = 0; return getLineAtIndex(this, i, count); } int RenderBlock::lineCount() { int count = 0; if (style()->visibility() == VISIBLE) { if (childrenInline()) for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) count++; else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) count += static_cast(obj)->lineCount(); } return count; } int RenderBlock::heightForLineCount(int l) { int count = 0; return getHeightForLineCount(this, l, true, count); } void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const { // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting // for either overflow or translations via relative positioning. if (style()->visibility() == VISIBLE) { if (childrenInline()) { for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { if (box->firstChild()) left = min(left, x + box->firstChild()->xPos()); if (box->lastChild()) right = max(right, x + box->lastChild()->xPos() + box->lastChild()->width()); } } else { for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) { if (!obj->isFloatingOrPositioned()) { if (obj->isBlockFlow() && !obj->hasOverflowClip()) static_cast(obj)->adjustForBorderFit(x + obj->xPos(), left, right); else if (obj->style()->visibility() == VISIBLE) { // We are a replaced element or some kind of non-block-flow object. left = min(left, x + obj->xPos()); right = max(right, x + obj->xPos() + obj->width()); } } } } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { // Only examine the object if our noPaint flag isn't set. if (!r->noPaint) { int floatLeft = r->left - r->node->xPos() + r->node->marginLeft(); int floatRight = floatLeft + r->node->width(); left = min(left, floatLeft); right = max(right, floatRight); } } } } } void RenderBlock::borderFitAdjust(int& x, int& w) const { if (style()->borderFit() == BorderFitBorder) return; // Walk any normal flow lines to snugly fit. int left = INT_MAX; int right = INT_MIN; int oldWidth = w; adjustForBorderFit(0, left, right); if (left != INT_MAX) { left -= (borderLeft() + paddingLeft()); if (left > 0) { x += left; w -= left; } } if (right != INT_MIN) { right += (borderRight() + paddingRight()); if (right < oldWidth) w -= (oldWidth - right); } } void RenderBlock::clearTruncation() { if (style()->visibility() == VISIBLE) { if (childrenInline() && hasMarkupTruncation()) { setHasMarkupTruncation(false); for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) box->clearTruncation(); } else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) static_cast(obj)->clearTruncation(); } } void RenderBlock::setMaxTopMargins(int pos, int neg) { if (!m_maxMargin) { if (pos == MaxMargin::topPosDefault(this) && neg == MaxMargin::topNegDefault(this)) return; m_maxMargin = new MaxMargin(this); } m_maxMargin->m_topPos = pos; m_maxMargin->m_topNeg = neg; } void RenderBlock::setMaxBottomMargins(int pos, int neg) { if (!m_maxMargin) { if (pos == MaxMargin::bottomPosDefault(this) && neg == MaxMargin::bottomNegDefault(this)) return; m_maxMargin = new MaxMargin(this); } m_maxMargin->m_bottomPos = pos; m_maxMargin->m_bottomNeg = neg; } const char* RenderBlock::renderName() const { if (isBody()) return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. if (isFloating()) return "RenderBlock (floating)"; if (isPositioned()) return "RenderBlock (positioned)"; if (isAnonymousBlock()) return "RenderBlock (anonymous)"; else if (isAnonymous()) return "RenderBlock (generated)"; if (isRelPositioned()) return "RenderBlock (relative positioned)"; if (isCompact()) return "RenderBlock (compact)"; if (isRunIn()) return "RenderBlock (run-in)"; return "RenderBlock"; } #ifndef NDEBUG void RenderBlock::dump(TextStream *stream, DeprecatedString ind) const { if (m_childrenInline) { *stream << " childrenInline"; } if (m_firstLine) { *stream << " firstLine"; } if (m_floatingObjects && !m_floatingObjects->isEmpty()) { *stream << " special("; DeprecatedPtrListIterator it(*m_floatingObjects); FloatingObject *r; bool first = true; for ( ; (r = it.current()); ++it ) { if (!first) *stream << ","; *stream << r->node->renderName(); first = false; } *stream << ")"; } // ### EClear m_clearStatus RenderFlow::dump(stream,ind); } #endif } // namespace WebCore