summaryrefslogtreecommitdiffstats
path: root/base/atomicops_internals_arm_gcc.h
blob: e654afa7d270ee7ef60aed48cc152b7d3e19fb1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This file is an internal atomic implementation, use base/atomicops.h instead.
//
// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.

#ifndef BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_
#define BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_

#if defined(OS_QNX)
#include <sys/cpuinline.h>
#endif

namespace base {
namespace subtle {

// Memory barriers on ARM are funky, but the kernel is here to help:
//
// * ARMv5 didn't support SMP, there is no memory barrier instruction at
//   all on this architecture, or when targeting its machine code.
//
// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
//   writing a random value to a very specific coprocessor register.
//
// * On ARMv7, the "dmb" instruction is used to perform a full memory
//   barrier (though writing to the co-processor will still work).
//   However, on single core devices (e.g. Nexus One, or Nexus S),
//   this instruction will take up to 200 ns, which is huge, even though
//   it's completely un-needed on these devices.
//
// * There is no easy way to determine at runtime if the device is
//   single or multi-core. However, the kernel provides a useful helper
//   function at a fixed memory address (0xffff0fa0), which will always
//   perform a memory barrier in the most efficient way. I.e. on single
//   core devices, this is an empty function that exits immediately.
//   On multi-core devices, it implements a full memory barrier.
//
// * This source could be compiled to ARMv5 machine code that runs on a
//   multi-core ARMv6 or ARMv7 device. In this case, memory barriers
//   are needed for correct execution. Always call the kernel helper, even
//   when targeting ARMv5TE.
//

inline void MemoryBarrier() {
#if defined(OS_LINUX) || defined(OS_ANDROID)
  // Note: This is a function call, which is also an implicit compiler barrier.
  typedef void (*KernelMemoryBarrierFunc)();
  ((KernelMemoryBarrierFunc)0xffff0fa0)();
#elif defined(OS_QNX)
  __cpu_membarrier();
#else
#error MemoryBarrier() is not implemented on this platform.
#endif
}

// An ARM toolchain would only define one of these depending on which
// variant of the target architecture is being used. This tests against
// any known ARMv6 or ARMv7 variant, where it is possible to directly
// use ldrex/strex instructions to implement fast atomic operations.
#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
    defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
    defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
    defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
    defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)

inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
                                         Atomic32 old_value,
                                         Atomic32 new_value) {
  Atomic32 prev_value;
  int reloop;
  do {
    // The following is equivalent to:
    //
    //   prev_value = LDREX(ptr)
    //   reloop = 0
    //   if (prev_value != old_value)
    //      reloop = STREX(ptr, new_value)
    __asm__ __volatile__("    ldrex %0, [%3]\n"
                         "    mov %1, #0\n"
                         "    cmp %0, %4\n"
#ifdef __thumb2__
                         "    it eq\n"
#endif
                         "    strexeq %1, %5, [%3]\n"
                         : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
                         : "r"(ptr), "r"(old_value), "r"(new_value)
                         : "cc", "memory");
  } while (reloop != 0);
  return prev_value;
}

inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value,
                                       Atomic32 new_value) {
  Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
  MemoryBarrier();
  return result;
}

inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value,
                                       Atomic32 new_value) {
  MemoryBarrier();
  return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}

inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
                                          Atomic32 increment) {
  Atomic32 value;
  int reloop;
  do {
    // Equivalent to:
    //
    //  value = LDREX(ptr)
    //  value += increment
    //  reloop = STREX(ptr, value)
    //
    __asm__ __volatile__("    ldrex %0, [%3]\n"
                         "    add %0, %0, %4\n"
                         "    strex %1, %0, [%3]\n"
                         : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
                         : "r"(ptr), "r"(increment)
                         : "cc", "memory");
  } while (reloop);
  return value;
}

inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
                                        Atomic32 increment) {
  // TODO(digit): Investigate if it's possible to implement this with
  // a single MemoryBarrier() operation between the LDREX and STREX.
  // See http://crbug.com/246514
  MemoryBarrier();
  Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
  MemoryBarrier();
  return result;
}

inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
                                         Atomic32 new_value) {
  Atomic32 old_value;
  int reloop;
  do {
    // old_value = LDREX(ptr)
    // reloop = STREX(ptr, new_value)
    __asm__ __volatile__("   ldrex %0, [%3]\n"
                         "   strex %1, %4, [%3]\n"
                         : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
                         : "r"(ptr), "r"(new_value)
                         : "cc", "memory");
  } while (reloop != 0);
  return old_value;
}

// This tests against any known ARMv5 variant.
#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
      defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)

// The kernel also provides a helper function to perform an atomic
// compare-and-swap operation at the hard-wired address 0xffff0fc0.
// On ARMv5, this is implemented by a special code path that the kernel
// detects and treats specially when thread pre-emption happens.
// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
//
// Note that this always perform a full memory barrier, there is no
// need to add calls MemoryBarrier() before or after it. It also
// returns 0 on success, and 1 on exit.
//
// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
// use newer kernel revisions, so this should not be a concern.
namespace {

inline int LinuxKernelCmpxchg(Atomic32 old_value,
                              Atomic32 new_value,
                              volatile Atomic32* ptr) {
  typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
  return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
}

}  // namespace

inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
                                         Atomic32 old_value,
                                         Atomic32 new_value) {
  Atomic32 prev_value;
  for (;;) {
    prev_value = *ptr;
    if (prev_value != old_value)
      return prev_value;
    if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
      return old_value;
  }
}

inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
                                         Atomic32 new_value) {
  Atomic32 old_value;
  do {
    old_value = *ptr;
  } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
  return old_value;
}

inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
                                          Atomic32 increment) {
  return Barrier_AtomicIncrement(ptr, increment);
}

inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
                                        Atomic32 increment) {
  for (;;) {
    // Atomic exchange the old value with an incremented one.
    Atomic32 old_value = *ptr;
    Atomic32 new_value = old_value + increment;
    if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
      // The exchange took place as expected.
      return new_value;
    }
    // Otherwise, *ptr changed mid-loop and we need to retry.
  }
}

inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value,
                                       Atomic32 new_value) {
  Atomic32 prev_value;
  for (;;) {
    prev_value = *ptr;
    if (prev_value != old_value) {
      // Always ensure acquire semantics.
      MemoryBarrier();
      return prev_value;
    }
    if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
      return old_value;
  }
}

inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value,
                                       Atomic32 new_value) {
  // This could be implemented as:
  //    MemoryBarrier();
  //    return NoBarrier_CompareAndSwap();
  //
  // But would use 3 barriers per succesful CAS. To save performance,
  // use Acquire_CompareAndSwap(). Its implementation guarantees that:
  // - A succesful swap uses only 2 barriers (in the kernel helper).
  // - An early return due to (prev_value != old_value) performs
  //   a memory barrier with no store, which is equivalent to the
  //   generic implementation above.
  return Acquire_CompareAndSwap(ptr, old_value, new_value);
}

#else
#  error "Your CPU's ARM architecture is not supported yet"
#endif

// NOTE: Atomicity of the following load and store operations is only
// guaranteed in case of 32-bit alignement of |ptr| values.

inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
  *ptr = value;
}

inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
  *ptr = value;
  MemoryBarrier();
}

inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
  MemoryBarrier();
  *ptr = value;
}

inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }

inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
  Atomic32 value = *ptr;
  MemoryBarrier();
  return value;
}

inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
  MemoryBarrier();
  return *ptr;
}

}  // namespace base::subtle
}  // namespace base

#endif  // BASE_ATOMICOPS_INTERNALS_ARM_GCC_H_