summaryrefslogtreecommitdiffstats
path: root/base/bind_helpers.h
blob: 27434e0ae6c6370398bf741e094ccc0e3cd9293a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This defines a set of argument wrappers and related factory methods that
// can be used specify the refcounting and reference semantics of arguments
// that are bound by the Bind() function in base/bind.h.
//
// The public functions are base::Unretained() and base::ConstRef().
// Unretained() allows Bind() to bind a non-refcounted class.
// ConstRef() allows binding a constant reference to an argument rather
// than a copy.
//
//
// EXAMPLE OF Unretained():
//
//   class Foo {
//    public:
//     void func() { cout << "Foo:f" << endl;
//   };
//
//   // In some function somewhere.
//   Foo foo;
//   Callback<void(void)> foo_callback =
//       Bind(&Foo::func, Unretained(&foo));
//   foo_callback.Run();  // Prints "Foo:f".
//
// Without the Unretained() wrapper on |&foo|, the above call would fail
// to compile because Foo does not support the AddRef() and Release() methods.
//
//
// EXAMPLE OF ConstRef();
//   void foo(int arg) { cout << arg << endl }
//
//   int n = 1;
//   Callback<void(void)> no_ref = Bind(&foo, n);
//   Callback<void(void)> has_ref = Bind(&foo, ConstRef(n));
//
//   no_ref.Run();  // Prints "1"
//   has_ref.Run();  // Prints "1"
//
//   n = 2;
//   no_ref.Run();  // Prints "1"
//   has_ref.Run();  // Prints "2"
//
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
// its bound callbacks.
//

#ifndef BASE_BIND_HELPERS_H_
#define BASE_BIND_HELPERS_H_
#pragma once

#include "base/basictypes.h"
#include "base/template_util.h"

namespace base {
namespace internal {

// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
// for the existence of AddRef() and Release() functions of the correct
// signature.
//
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
//
// The last link in particular show the method used below.
//
// For SFINAE to work with inherited methods, we need to pull some extra tricks
// with multiple inheritance.  In the more standard formulation, the overloads
// of Check would be:
//
//   template <typename C>
//   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
//
//   template <typename C>
//   No NotTheCheckWeWant(...);
//
//   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
//
// The problem here is that template resolution will not match
// C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
// |value| will be false.  This formulation only checks for whether or
// not TargetFunc exist directly in the class being introspected.
//
// To get around this, we play a dirty trick with multiple inheritance.
// First, We create a class BaseMixin that declares each function that we
// want to probe for.  Then we create a class Base that inherits from both T
// (the class we wish to probe) and BaseMixin.  Note that the function
// signature in BaseMixin does not need to match the signature of the function
// we are probing for; thus it's easiest to just use void(void).
//
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
// ambiguous resolution between BaseMixin and T.  This lets us write the
// following:
//
//   template <typename C>
//   No GoodCheck(Helper<&C::TargetFunc>*);
//
//   template <typename C>
//   Yes GoodCheck(...);
//
//   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
//
// Notice here that the variadic version of GoodCheck() returns Yes here
// instead of No like the previous one. Also notice that we calculate |value|
// by specializing GoodCheck() on Base instead of T.
//
// We've reversed the roles of the variadic, and Helper overloads.
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
// to the variadic version if T has TargetFunc.  If T::TargetFunc does not
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
//
// This method of SFINAE will correctly probe for inherited names, but it cannot
// typecheck those names.  It's still a good enough sanity check though.
//
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
//
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
// this works well.
template <typename T>
class SupportsAddRefAndRelease {
  typedef char Yes[1];
  typedef char No[2];

  struct BaseMixin {
    void AddRef();
    void Release();
  };

// MSVC warns when you try to use Base if T has a private destructor, the
// common pattern for refcounted types. It does this even though no attempt to
// instantiate Base is made.  We disable the warning for this definition.
#if defined(OS_WIN)
#pragma warning(disable:4624)
#endif
  struct Base : public T, public BaseMixin {
  };
#if defined(OS_WIN)
#pragma warning(default:4624)
#endif

  template <void(BaseMixin::*)(void)> struct Helper {};

  template <typename C>
  static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*);

  template <typename >
  static Yes& Check(...);

 public:
  static const bool value = sizeof(Check<Base>(0,0)) == sizeof(Yes);
};


// Helpers to assert that arguments of a recounted type are bound with a
// scoped_refptr.
template <bool IsClasstype, typename T>
struct UnsafeBindtoRefCountedArgHelper : false_type {
};

template <typename T>
struct UnsafeBindtoRefCountedArgHelper<true, T>
    : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
};

template <typename T>
struct UnsafeBindtoRefCountedArg : false_type {
};

template <typename T>
struct UnsafeBindtoRefCountedArg<T*>
    : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
};


template <typename T>
class UnretainedWrapper {
 public:
  explicit UnretainedWrapper(T* o) : obj_(o) {}
  T* get() { return obj_; }
 private:
  T* obj_;
};

template <typename T>
class ConstRefWrapper {
 public:
  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
  const T& get() { return *ptr_; }
 private:
  const T* ptr_;
};


// Unwrap the stored parameters for the wrappers above.
template <typename T>
T Unwrap(T o) { return o; }

template <typename T>
T* Unwrap(UnretainedWrapper<T> unretained) { return unretained.get(); }

template <typename T>
const T& Unwrap(ConstRefWrapper<T> const_ref) {
  return const_ref.get();
}


// Utility for handling different refcounting semantics in the Bind()
// function.
template <typename ref, typename T>
struct MaybeRefcount;

template <typename T>
struct MaybeRefcount<base::false_type, T> {
  static void AddRef(const T&) {}
  static void Release(const T&) {}
};

template <typename T, size_t n>
struct MaybeRefcount<base::false_type, T[n]> {
  static void AddRef(const T*) {}
  static void Release(const T*) {}
};

template <typename T>
struct MaybeRefcount<base::true_type, UnretainedWrapper<T> > {
  static void AddRef(const UnretainedWrapper<T>&) {}
  static void Release(const UnretainedWrapper<T>&) {}
};

template <typename T>
struct MaybeRefcount<base::true_type, T*> {
  static void AddRef(T* o) { o->AddRef(); }
  static void Release(T* o) { o->Release(); }
};

template <typename T>
struct MaybeRefcount<base::true_type, const T*> {
  static void AddRef(const T* o) { o->AddRef(); }
  static void Release(const T* o) { o->Release(); }
};

}  // namespace internal

template <typename T>
inline internal::UnretainedWrapper<T> Unretained(T* o) {
  return internal::UnretainedWrapper<T>(o);
}

template <typename T>
inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
  return internal::ConstRefWrapper<T>(o);
}

}  // namespace base

#endif  // BASE_BIND_HELPERS_H_