summaryrefslogtreecommitdiffstats
path: root/base/bind_helpers.h
blob: c49b5b8187ae3757207b701f648efe383fa3e29a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This defines a set of argument wrappers and related factory methods that
// can be used specify the refcounting and reference semantics of arguments
// that are bound by the Bind() function in base/bind.h.
//
// It also defines a set of simple functions and utilities that people want
// when using Callback<> and Bind().
//
//
// ARGUMENT BINDING WRAPPERS
//
// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
// base::ConstRef(), and base::IgnoreResult().
//
// Unretained() allows Bind() to bind a non-refcounted class, and to disable
// refcounting on arguments that are refcounted objects.
//
// Owned() transfers ownership of an object to the Callback resulting from
// bind; the object will be deleted when the Callback is deleted.
//
// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
// through a Callback. Logically, this signifies a destructive transfer of
// the state of the argument into the target function.  Invoking
// Callback::Run() twice on a Callback that was created with a Passed()
// argument will CHECK() because the first invocation would have already
// transferred ownership to the target function.
//
// ConstRef() allows binding a constant reference to an argument rather
// than a copy.
//
// IgnoreResult() is used to adapt a function or Callback with a return type to
// one with a void return. This is most useful if you have a function with,
// say, a pesky ignorable bool return that you want to use with PostTask or
// something else that expect a Callback with a void return.
//
// EXAMPLE OF Unretained():
//
//   class Foo {
//    public:
//     void func() { cout << "Foo:f" << endl; }
//   };
//
//   // In some function somewhere.
//   Foo foo;
//   Closure foo_callback =
//       Bind(&Foo::func, Unretained(&foo));
//   foo_callback.Run();  // Prints "Foo:f".
//
// Without the Unretained() wrapper on |&foo|, the above call would fail
// to compile because Foo does not support the AddRef() and Release() methods.
//
//
// EXAMPLE OF Owned():
//
//   void foo(int* arg) { cout << *arg << endl }
//
//   int* pn = new int(1);
//   Closure foo_callback = Bind(&foo, Owned(pn));
//
//   foo_callback.Run();  // Prints "1"
//   foo_callback.Run();  // Prints "1"
//   *n = 2;
//   foo_callback.Run();  // Prints "2"
//
//   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
//                          // |foo_callback| goes out of scope.
//
// Without Owned(), someone would have to know to delete |pn| when the last
// reference to the Callback is deleted.
//
//
// EXAMPLE OF ConstRef():
//
//   void foo(int arg) { cout << arg << endl }
//
//   int n = 1;
//   Closure no_ref = Bind(&foo, n);
//   Closure has_ref = Bind(&foo, ConstRef(n));
//
//   no_ref.Run();  // Prints "1"
//   has_ref.Run();  // Prints "1"
//
//   n = 2;
//   no_ref.Run();  // Prints "1"
//   has_ref.Run();  // Prints "2"
//
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
// its bound callbacks.
//
//
// EXAMPLE OF IgnoreResult():
//
//   int DoSomething(int arg) { cout << arg << endl; }
//
//   // Assign to a Callback with a void return type.
//   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
//   cb->Run(1);  // Prints "1".
//
//   // Prints "1" on |ml|.
//   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
//
//
// EXAMPLE OF Passed():
//
//   void TakesOwnership(scoped_ptr<Foo> arg) { }
//   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
//
//   scoped_ptr<Foo> f(new Foo());
//
//   // |cb| is given ownership of Foo(). |f| is now NULL.
//   // You can use f.Pass() in place of &f, but it's more verbose.
//   Closure cb = Bind(&TakesOwnership, Passed(&f));
//
//   // Run was never called so |cb| still owns Foo() and deletes
//   // it on Reset().
//   cb.Reset();
//
//   // |cb| is given a new Foo created by CreateFoo().
//   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
//
//   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
//   // no longer owns Foo() and, if reset, would not delete Foo().
//   cb.Run();  // Foo() is now transferred to |arg| and deleted.
//   cb.Run();  // This CHECK()s since Foo() already been used once.
//
// Passed() is particularly useful with PostTask() when you are transferring
// ownership of an argument into a task, but don't necessarily know if the
// task will always be executed. This can happen if the task is cancellable
// or if it is posted to a MessageLoopProxy.
//
//
// SIMPLE FUNCTIONS AND UTILITIES.
//
//   DoNothing() - Useful for creating a Closure that does nothing when called.
//   DeletePointer<T>() - Useful for creating a Closure that will delete a
//                        pointer when invoked. Only use this when necessary.
//                        In most cases MessageLoop::DeleteSoon() is a better
//                        fit.

#ifndef BASE_BIND_HELPERS_H_
#define BASE_BIND_HELPERS_H_

#include "base/basictypes.h"
#include "base/callback.h"
#include "base/memory/weak_ptr.h"
#include "base/template_util.h"

namespace base {
namespace internal {

// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
// for the existence of AddRef() and Release() functions of the correct
// signature.
//
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
//
// The last link in particular show the method used below.
//
// For SFINAE to work with inherited methods, we need to pull some extra tricks
// with multiple inheritance.  In the more standard formulation, the overloads
// of Check would be:
//
//   template <typename C>
//   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
//
//   template <typename C>
//   No NotTheCheckWeWant(...);
//
//   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
//
// The problem here is that template resolution will not match
// C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
// |value| will be false.  This formulation only checks for whether or
// not TargetFunc exist directly in the class being introspected.
//
// To get around this, we play a dirty trick with multiple inheritance.
// First, We create a class BaseMixin that declares each function that we
// want to probe for.  Then we create a class Base that inherits from both T
// (the class we wish to probe) and BaseMixin.  Note that the function
// signature in BaseMixin does not need to match the signature of the function
// we are probing for; thus it's easiest to just use void(void).
//
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
// ambiguous resolution between BaseMixin and T.  This lets us write the
// following:
//
//   template <typename C>
//   No GoodCheck(Helper<&C::TargetFunc>*);
//
//   template <typename C>
//   Yes GoodCheck(...);
//
//   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
//
// Notice here that the variadic version of GoodCheck() returns Yes here
// instead of No like the previous one. Also notice that we calculate |value|
// by specializing GoodCheck() on Base instead of T.
//
// We've reversed the roles of the variadic, and Helper overloads.
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
// to the variadic version if T has TargetFunc.  If T::TargetFunc does not
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
//
// This method of SFINAE will correctly probe for inherited names, but it cannot
// typecheck those names.  It's still a good enough sanity check though.
//
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
//
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
// this works well.
//
// TODO(ajwong): Make this check for Release() as well.
// See http://crbug.com/82038.
template <typename T>
class SupportsAddRefAndRelease {
  typedef char Yes[1];
  typedef char No[2];

  struct BaseMixin {
    void AddRef();
  };

// MSVC warns when you try to use Base if T has a private destructor, the
// common pattern for refcounted types. It does this even though no attempt to
// instantiate Base is made.  We disable the warning for this definition.
#if defined(OS_WIN)
#pragma warning(push)
#pragma warning(disable:4624)
#endif
  struct Base : public T, public BaseMixin {
  };
#if defined(OS_WIN)
#pragma warning(pop)
#endif

  template <void(BaseMixin::*)(void)> struct Helper {};

  template <typename C>
  static No& Check(Helper<&C::AddRef>*);

  template <typename >
  static Yes& Check(...);

 public:
  enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
};

// Helpers to assert that arguments of a recounted type are bound with a
// scoped_refptr.
template <bool IsClasstype, typename T>
struct UnsafeBindtoRefCountedArgHelper : false_type {
};

template <typename T>
struct UnsafeBindtoRefCountedArgHelper<true, T>
    : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
};

template <typename T>
struct UnsafeBindtoRefCountedArg : false_type {
};

template <typename T>
struct UnsafeBindtoRefCountedArg<T*>
    : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
};

template <typename T>
class HasIsMethodTag {
  typedef char Yes[1];
  typedef char No[2];

  template <typename U>
  static Yes& Check(typename U::IsMethod*);

  template <typename U>
  static No& Check(...);

 public:
  enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
};

template <typename T>
class UnretainedWrapper {
 public:
  explicit UnretainedWrapper(T* o) : ptr_(o) {}
  T* get() const { return ptr_; }
 private:
  T* ptr_;
};

template <typename T>
class ConstRefWrapper {
 public:
  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
  const T& get() const { return *ptr_; }
 private:
  const T* ptr_;
};

template <typename T>
struct IgnoreResultHelper {
  explicit IgnoreResultHelper(T functor) : functor_(functor) {}

  T functor_;
};

template <typename T>
struct IgnoreResultHelper<Callback<T> > {
  explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}

  const Callback<T>& functor_;
};

// An alternate implementation is to avoid the destructive copy, and instead
// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
// a class that is essentially a scoped_ptr<>.
//
// The current implementation has the benefit though of leaving ParamTraits<>
// fully in callback_internal.h as well as avoiding type conversions during
// storage.
template <typename T>
class OwnedWrapper {
 public:
  explicit OwnedWrapper(T* o) : ptr_(o) {}
  ~OwnedWrapper() { delete ptr_; }
  T* get() const { return ptr_; }
  OwnedWrapper(const OwnedWrapper& other) {
    ptr_ = other.ptr_;
    other.ptr_ = NULL;
  }

 private:
  mutable T* ptr_;
};

// PassedWrapper is a copyable adapter for a scoper that ignores const.
//
// It is needed to get around the fact that Bind() takes a const reference to
// all its arguments.  Because Bind() takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into Bind() would violate
// the const correctness.
//
// This conundrum cannot be solved without either C++11 rvalue references or
// a O(2^n) blowup of Bind() templates to handle each combination of regular
// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
// that is copyable to transmit the correct type information down into
// BindState<>. Ignoring const in this type makes sense because it is only
// created when we are explicitly trying to do a destructive move.
//
// Two notes:
//  1) PassedWrapper supports any type that has a "Pass()" function.
//     This is intentional. The whitelisting of which specific types we
//     support is maintained by CallbackParamTraits<>.
//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
//     scoper to a Callback and allow the Callback to execute once.
template <typename T>
class PassedWrapper {
 public:
  explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
  PassedWrapper(const PassedWrapper& other)
      : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
  }
  T Pass() const {
    CHECK(is_valid_);
    is_valid_ = false;
    return scoper_.Pass();
  }

 private:
  mutable bool is_valid_;
  mutable T scoper_;
};

// Unwrap the stored parameters for the wrappers above.
template <typename T>
struct UnwrapTraits {
  typedef const T& ForwardType;
  static ForwardType Unwrap(const T& o) { return o; }
};

template <typename T>
struct UnwrapTraits<UnretainedWrapper<T> > {
  typedef T* ForwardType;
  static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
    return unretained.get();
  }
};

template <typename T>
struct UnwrapTraits<ConstRefWrapper<T> > {
  typedef const T& ForwardType;
  static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
    return const_ref.get();
  }
};

template <typename T>
struct UnwrapTraits<scoped_refptr<T> > {
  typedef T* ForwardType;
  static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
};

template <typename T>
struct UnwrapTraits<WeakPtr<T> > {
  typedef const WeakPtr<T>& ForwardType;
  static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
};

template <typename T>
struct UnwrapTraits<OwnedWrapper<T> > {
  typedef T* ForwardType;
  static ForwardType Unwrap(const OwnedWrapper<T>& o) {
    return o.get();
  }
};

template <typename T>
struct UnwrapTraits<PassedWrapper<T> > {
  typedef T ForwardType;
  static T Unwrap(PassedWrapper<T>& o) {
    return o.Pass();
  }
};

// Utility for handling different refcounting semantics in the Bind()
// function.
template <bool is_method, typename... T>
struct MaybeScopedRefPtr;

template <bool is_method>
struct MaybeScopedRefPtr<is_method> {
  MaybeScopedRefPtr() {}
};

template <typename T, typename... Rest>
struct MaybeScopedRefPtr<false, T, Rest...> {
  MaybeScopedRefPtr(const T&, const Rest&...) {}
};

template <typename T, size_t n, typename... Rest>
struct MaybeScopedRefPtr<false, T[n], Rest...> {
  MaybeScopedRefPtr(const T*, const Rest&...) {}
};

template <typename T, typename... Rest>
struct MaybeScopedRefPtr<true, T, Rest...> {
  MaybeScopedRefPtr(const T& o, const Rest&...) {}
};

template <typename T, typename... Rest>
struct MaybeScopedRefPtr<true, T*, Rest...> {
  MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
  scoped_refptr<T> ref_;
};

// No need to additionally AddRef() and Release() since we are storing a
// scoped_refptr<> inside the storage object already.
template <typename T, typename... Rest>
struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
  MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
};

template <typename T, typename... Rest>
struct MaybeScopedRefPtr<true, const T*, Rest...> {
  MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
  scoped_refptr<const T> ref_;
};

// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
// method.  It is used internally by Bind() to select the correct
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
// the target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool IsMethod, typename... Args>
struct IsWeakMethod : public false_type {};

template <typename T, typename... Args>
struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};

template <typename T, typename... Args>
struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
    : public true_type {};


// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};

// Used for DropTypeListItem implementation.
template <size_t n, typename List>
struct DropTypeListItemImpl;

// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List>
struct DropTypeListItemImpl<n, TypeList<T, List...>>
    : DropTypeListItemImpl<n - 1, TypeList<List...>> {};

template <typename T, typename... List>
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
  typedef TypeList<T, List...> Type;
};

template <>
struct DropTypeListItemImpl<0, TypeList<>> {
  typedef TypeList<> Type;
};

// A type-level function that drops |n| list item from given TypeList.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;

// Used for ConcatTypeLists implementation.
template <typename List1, typename List2>
struct ConcatTypeListsImpl;

template <typename... Types1, typename... Types2>
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
  typedef TypeList<Types1..., Types2...> Type;
};

// A type-level function that concats two TypeLists.
template <typename List1, typename List2>
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;

// Used for MakeFunctionType implementation.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;

template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
  typedef R(Type)(Args...);
};

// A type-level function that constructs a function type that has |R| as its
// return type and has TypeLists items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;

}  // namespace internal

template <typename T>
static inline internal::UnretainedWrapper<T> Unretained(T* o) {
  return internal::UnretainedWrapper<T>(o);
}

template <typename T>
static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
  return internal::ConstRefWrapper<T>(o);
}

template <typename T>
static inline internal::OwnedWrapper<T> Owned(T* o) {
  return internal::OwnedWrapper<T>(o);
}

// We offer 2 syntaxes for calling Passed().  The first takes a temporary and
// is best suited for use with the return value of a function. The second
// takes a pointer to the scoper and is just syntactic sugar to avoid having
// to write Passed(scoper.Pass()).
template <typename T>
static inline internal::PassedWrapper<T> Passed(T scoper) {
  return internal::PassedWrapper<T>(scoper.Pass());
}
template <typename T>
static inline internal::PassedWrapper<T> Passed(T* scoper) {
  return internal::PassedWrapper<T>(scoper->Pass());
}

template <typename T>
static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
  return internal::IgnoreResultHelper<T>(data);
}

template <typename T>
static inline internal::IgnoreResultHelper<Callback<T> >
IgnoreResult(const Callback<T>& data) {
  return internal::IgnoreResultHelper<Callback<T> >(data);
}

BASE_EXPORT void DoNothing();

template<typename T>
void DeletePointer(T* obj) {
  delete obj;
}

}  // namespace base

#endif  // BASE_BIND_HELPERS_H_