1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
$$ This is a pump file for generating file templates. Pump is a python
$$ script that is part of the Google Test suite of utilities. Description
$$ can be found here:
$$
$$ http://code.google.com/p/googletest/wiki/PumpManual
$$
$var MAX_ARITY = 6
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_BIND_INTERNAL_H_
#define BASE_BIND_INTERNAL_H_
#pragma once
#include "base/bind_helpers.h"
#include "base/callback_internal.h"
#include "base/memory/weak_ptr.h"
#include "base/template_util.h"
#include "build/build_config.h"
#if defined(OS_WIN)
#include "base/bind_internal_win.h"
#endif
namespace base {
namespace internal {
// The method by which a function is invoked is determined by 3 different
// dimensions:
//
// 1) The type of function (normal or method).
// 2) The arity of the function.
// 3) The number of bound parameters.
//
// The templates below handle the determination of each of these dimensions.
// In brief:
//
// FunctionTraits<> -- Provides a normalied signature, and other traits.
// InvokerN<> -- Provides a DoInvoke() function that actually executes
// a calback.
// InvokerStorageN<> -- Provides storage for the bound parameters, and
// typedefs to the above.
// IsWeakMethod<> -- Determines if we are binding a method to a WeakPtr<>.
//
// More details about the design of each class is included in a comment closer
// to their defition.
// IsWeakMethod determines if we are binding a method to a WeakPtr<> for an
// object. It is used to select an InvokerN that will no-op itself in the
// event the WeakPtr<> for the target object is invalidated.
template <bool IsMethod, typename T>
struct IsWeakMethod : public false_type {};
template <typename T>
struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
// FunctionTraits<>
//
// The FunctionTraits<> template determines the type of function, and also
// creates a NormalizedType used to select the InvokerN classes. It turns out
// that syntactically, you only really have 2 variations when invoking a
// funciton pointer: normal, and method. One is invoked func_ptr(arg1). The
// other is invoked (*obj_->method_ptr(arg1)).
//
// However, in the type system, there are many more distinctions. In standard
// C++, there's all variations of const, and volatile on the function pointer.
// In Windows, there are additional calling conventions (eg., __stdcall,
// __fastcall, etc.). FunctionTraits<> handles categorizing each of these into
// a normalized signature.
//
// Having a NormalizedSignature signature, reduces the combinatoric
// complexity of defintions for the InvokerN<> later. Even though there are
// only 2 syntactic variations on invoking a function, without normalizing the
// signature, there would need to be one specialization of InvokerN for each
// unique (function_type, bound_arg, unbound_args) tuple in order to match all
// function signatures.
//
// By normalizing the function signature, we reduce function_type to exactly 2.
template <typename Sig>
struct FunctionTraits;
$range ARITY 0..MAX_ARITY
$for ARITY [[
$range ARG 1..ARITY
// Function: Arity $(ARITY).
template <typename R[[]]
$if ARITY > 0[[, ]] $for ARG , [[typename X$(ARG)]]>
struct FunctionTraits<R(*)($for ARG , [[X$(ARG)]])> {
typedef R (*NormalizedSig)($for ARG , [[X$(ARG)]]);
typedef false_type IsMethod;
typedef R Return;
$if ARITY > 0 [[
// Target type for each bound parameter.
$for ARG [[
typedef X$(ARG) B$(ARG);
]] $$ for ARG
]] $$ if ARITY > 0
};
// Method: Arity $(ARITY).
template <typename R, typename T[[]]
$if ARITY > 0[[, ]] $for ARG , [[typename X$(ARG)]]>
struct FunctionTraits<R(T::*)($for ARG , [[X$(ARG)]])> {
typedef R (T::*NormalizedSig)($for ARG , [[X$(ARG)]]);
typedef true_type IsMethod;
typedef R Return;
// Target type for each bound parameter.
typedef T B1;
$for ARG [[
typedef X$(ARG) B$(ARG + 1);
]] $$ for ARG
};
// Const Method: Arity $(ARITY).
template <typename R, typename T[[]]
$if ARITY > 0[[, ]] $for ARG , [[typename X$(ARG)]]>
struct FunctionTraits<R(T::*)($for ARG , [[X$(ARG)]]) const> {
typedef R (T::*NormalizedSig)($for ARG , [[X$(ARG)]]);
typedef true_type IsMethod;
typedef R Return;
// Target type for each bound parameter.
typedef T B1;
$for ARG [[
typedef X$(ARG) B$(ARG + 1);
]] $$ for ARG
};
]] $$for ARITY
// InvokerN<>
//
// The InvokerN templates contain a static DoInvoke() function that is the key
// to implementing type erasure in the Callback() classes.
//
// DoInvoke() is a static function with a fixed signature that is independent
// of StorageType; its first argument is a pointer to the non-templated common
// baseclass of StorageType. This lets us store pointer to DoInvoke() in a
// function pointer that has knowledge of the specific StorageType, and thus
// no knowledge of the bound function and bound parameter types.
//
// As long as we ensure that DoInvoke() is only used with pointers there were
// upcasted from the correct StorageType, we can be sure that execution is
// safe.
//
// The InvokerN templates are the only point that knows the number of bound
// and unbound arguments. This is intentional because it allows the other
// templates classes in the system to only have as many specializations as
// the max arity of function we wish to support.
$range BOUND 0..MAX_ARITY
$for BOUND [[
template <bool IsWeak, typename StorageType, typename NormalizedSig>
struct Invoker$(BOUND);
$range ARITY 0..MAX_ARITY
$for ARITY [[
$var UNBOUND = ARITY - BOUND
$if UNBOUND >= 0 [[
$$ Variables for function traits generation.
$range ARG 1..ARITY
$range BOUND_ARG 1..BOUND
$range UNBOUND_ARG (ARITY - UNBOUND + 1)..ARITY
$$ Variables for method traits generation. We are always short one arity since
$$ the first bound parameter is the object.
$var M_ARITY = ARITY - 1
$range M_ARG 1..M_ARITY
$range M_BOUND_ARG 2..BOUND
$range M_UNBOUND_ARG (M_ARITY - UNBOUND + 1)..M_ARITY
// Function: Arity $(ARITY) -> $(UNBOUND).
template <typename StorageType, typename R[[]]
$if ARITY > 0 [[,]][[]]
$for ARG , [[typename X$(ARG)]]>
struct Invoker$(BOUND)<false, StorageType, R(*)($for ARG , [[X$(ARG)]])> {
typedef R(*DoInvokeType)(
internal::InvokerStorageBase*[[]]
$if UNBOUND != 0 [[, ]]
$for UNBOUND_ARG , [[typename internal::ParamTraits<X$(UNBOUND_ARG)>::ForwardType]]);
static R DoInvoke(InvokerStorageBase* base[[]]
$if UNBOUND != 0 [[, ]][[]]
$for UNBOUND_ARG , [[typename internal::ParamTraits<X$(UNBOUND_ARG)>::ForwardType x$(UNBOUND_ARG)]]) {
StorageType* invoker = static_cast<StorageType*>(base);
return invoker->f_($for BOUND_ARG , [[Unwrap(invoker->p$(BOUND_ARG)_)]][[]]
$$ Add comma if there are both boudn and unbound args.
$if UNBOUND > 0 [[$if BOUND > 0 [[, ]]]][[]]
$for UNBOUND_ARG , [[x$(UNBOUND_ARG)]]);
}
};
$if BOUND > 0 [[
// Method: Arity $(M_ARITY) -> $(UNBOUND).
template <typename StorageType, typename R, typename T[[]]
$if M_ARITY > 0[[, ]] $for M_ARG , [[typename X$(M_ARG)]]>
struct Invoker$(BOUND)<false, StorageType, R(T::*)($for M_ARG , [[X$(M_ARG)]])> {
typedef R(*DoInvokeType)(
internal::InvokerStorageBase*[[]]
$if UNBOUND != 0 [[, ]]
$for M_UNBOUND_ARG , [[typename internal::ParamTraits<X$(M_UNBOUND_ARG)>::ForwardType]]);
static R DoInvoke(InvokerStorageBase* base[[]]
$if UNBOUND > 0 [[, ]][[]]
$for M_UNBOUND_ARG , [[typename internal::ParamTraits<X$(M_UNBOUND_ARG)>::ForwardType x$(M_UNBOUND_ARG)]]) {
StorageType* invoker = static_cast<StorageType*>(base);
return (Unwrap(invoker->p1_)->*invoker->f_)([[]]
$for M_BOUND_ARG , [[Unwrap(invoker->p$(M_BOUND_ARG)_)]][[]]
$if UNBOUND > 0 [[$if BOUND > 1 [[, ]]]][[]]
$for M_UNBOUND_ARG , [[x$(M_UNBOUND_ARG)]]);
}
};
// WeakPtr Method: Arity $(M_ARITY) -> $(UNBOUND).
template <typename StorageType, typename T[[]]
$if M_ARITY > 0[[, ]] $for M_ARG , [[typename X$(M_ARG)]]>
struct Invoker$(BOUND)<true, StorageType, void(T::*)($for M_ARG , [[X$(M_ARG)]])> {
typedef void(*DoInvokeType)(
internal::InvokerStorageBase*[[]]
$if UNBOUND != 0 [[, ]]
$for M_UNBOUND_ARG , [[typename internal::ParamTraits<X$(M_UNBOUND_ARG)>::ForwardType]]);
static void DoInvoke(InvokerStorageBase* base[[]]
$if UNBOUND > 0 [[, ]][[]]
$for M_UNBOUND_ARG , [[typename internal::ParamTraits<X$(M_UNBOUND_ARG)>::ForwardType x$(M_UNBOUND_ARG)]]) {
StorageType* invoker = static_cast<StorageType*>(base);
typename StorageType::P1Traits::StorageType& weak_ptr = invoker->p1_;
if (!weak_ptr.get()) {
return;
}
(weak_ptr->*invoker->f_)([[]]
$for M_BOUND_ARG , [[Unwrap(invoker->p$(M_BOUND_ARG)_)]][[]]
$if UNBOUND > 0 [[$if BOUND > 1 [[, ]]]][[]]
$for M_UNBOUND_ARG , [[x$(M_UNBOUND_ARG)]]);
}
};
]] $$ if BOUND
]] $$ if UNBOUND
]] $$ for ARITY
]] $$ for BOUND
// InvokerStorageN<>
//
// These are the actual storage classes for the Invokers.
//
// Though these types are "classes", they are being used as structs with
// all member variable public. We cannot make it a struct because it inherits
// from a class which causes a compiler warning. We cannot add a "Run()" method
// that forwards the unbound arguments because that would require we unwrap the
// Sig type like in InvokerN above to know the return type, and the arity
// of Run().
//
// An alternate solution would be to merge InvokerN and InvokerStorageN,
// but the generated code seemed harder to read.
$for BOUND [[
$range BOUND_ARG 1..BOUND
template <typename Sig[[]]
$if BOUND > 0 [[, ]]
$for BOUND_ARG , [[typename P$(BOUND_ARG)]]>
class InvokerStorage$(BOUND) : public InvokerStorageBase {
public:
typedef InvokerStorage$(BOUND) StorageType;
typedef FunctionTraits<Sig> TargetTraits;
typedef typename TargetTraits::IsMethod IsMethod;
typedef Sig Signature;
$for BOUND_ARG [[
typedef ParamTraits<P$(BOUND_ARG)> P$(BOUND_ARG)Traits;
]]
$if BOUND == 0 [[
typedef Invoker$(BOUND)<false, StorageType,
typename TargetTraits::NormalizedSig> Invoker;
]] $else [[
typedef Invoker$(BOUND)<IsWeakMethod<IsMethod::value, P1>::value, StorageType,
typename TargetTraits::NormalizedSig> Invoker;
COMPILE_ASSERT(!(IsWeakMethod<IsMethod::value, P1>::value) ||
is_void<typename TargetTraits::Return>::value,
weak_ptrs_can_only_bind_to_methods_without_return_values);
]]
$for BOUND_ARG [[
$if BOUND_ARG == 1 [[
// For methods, we need to be careful for parameter 1. We skip the
// scoped_refptr check because the binder itself takes care of this. We also
// disallow binding of an array as the method's target object.
COMPILE_ASSERT(IsMethod::value ||
!internal::UnsafeBindtoRefCountedArg<P$(BOUND_ARG)>::value,
p$(BOUND_ARG)_is_refcounted_type_and_needs_scoped_refptr);
COMPILE_ASSERT(!IsMethod::value || !is_array<P$(BOUND_ARG)>::value,
first_bound_argument_to_method_cannot_be_array);
]] $else [[
COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P$(BOUND_ARG)>::value,
p$(BOUND_ARG)_is_refcounted_type_and_needs_scoped_refptr);
]] $$ $if BOUND_ARG
]] $$ $for BOUND_ARG
$if BOUND > 0 [[
// Do not allow binding a non-const reference parameter. Non-const reference
// parameters are disallowed by the Google style guide. Also, binding a
// non-const reference parameter can make for subtle bugs because the
// invoked function will receive a reference to the stored copy of the
// argument and not the original.
COMPILE_ASSERT(
!($for BOUND_ARG || [[ is_non_const_reference<typename TargetTraits::B$(BOUND_ARG)>::value ]]),
do_not_bind_functions_with_nonconst_ref);
]]
InvokerStorage$(BOUND)(Sig f
$if BOUND > 0 [[, ]]
$for BOUND_ARG , [[const P$(BOUND_ARG)& p$(BOUND_ARG)]])
: f_(f)[[]]
$if BOUND == 0 [[
{
]] $else [[
, $for BOUND_ARG , [[p$(BOUND_ARG)_(static_cast<typename ParamTraits<P$(BOUND_ARG)>::StorageType>(p$(BOUND_ARG)))]] {
MaybeRefcount<IsMethod, P1>::AddRef(p1_);
]]
}
virtual ~InvokerStorage$(BOUND)() {
$if BOUND > 0 [[
MaybeRefcount<IsMethod, P1>::Release(p1_);
]]
}
Sig f_;
$for BOUND_ARG [[
typename ParamTraits<P$(BOUND_ARG)>::StorageType p$(BOUND_ARG)_;
]]
};
]] $$ for BOUND
} // namespace internal
} // namespace base
#endif // BASE_BIND_INTERNAL_H_
|