1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/crypto/encryptor.h"
#include <openssl/aes.h>
#include <openssl/evp.h>
#include "base/crypto/symmetric_key.h"
#include "base/logging.h"
#include "base/openssl_util.h"
#include "base/string_util.h"
namespace base {
namespace {
const EVP_CIPHER* GetCipherForKey(SymmetricKey* key) {
switch (key->key().length()) {
case 16: return EVP_aes_128_cbc();
case 24: return EVP_aes_192_cbc();
case 32: return EVP_aes_256_cbc();
default: return NULL;
}
}
// On destruction this class will cleanup the ctx, and also clear the OpenSSL
// ERR stack as a convenience.
class ScopedCipherCTX {
public:
explicit ScopedCipherCTX() {
EVP_CIPHER_CTX_init(&ctx_);
}
~ScopedCipherCTX() {
EVP_CIPHER_CTX_cleanup(&ctx_);
ClearOpenSSLERRStack(FROM_HERE);
}
EVP_CIPHER_CTX* get() { return &ctx_; }
private:
EVP_CIPHER_CTX ctx_;
};
} // namespace
Encryptor::Encryptor()
: key_(NULL),
mode_(CBC) {
}
Encryptor::~Encryptor() {
}
bool Encryptor::Init(SymmetricKey* key, Mode mode, const std::string& iv) {
DCHECK(key);
DCHECK_EQ(CBC, mode);
EnsureOpenSSLInit();
if (iv.size() != AES_BLOCK_SIZE)
return false;
if (GetCipherForKey(key) == NULL)
return false;
key_ = key;
mode_ = mode;
iv_ = iv;
return true;
}
bool Encryptor::Encrypt(const std::string& plaintext, std::string* ciphertext) {
return Crypt(true, plaintext, ciphertext);
}
bool Encryptor::Decrypt(const std::string& ciphertext, std::string* plaintext) {
return Crypt(false, ciphertext, plaintext);
}
bool Encryptor::Crypt(bool do_encrypt,
const std::string& input,
std::string* output) {
DCHECK(key_); // Must call Init() before En/De-crypt.
// Work on the result in a local variable, and then only transfer it to
// |output| on success to ensure no partial data is returned.
std::string result;
output->swap(result);
const EVP_CIPHER* cipher = GetCipherForKey(key_);
DCHECK(cipher); // Already handled in Init();
const std::string& key = key_->key();
DCHECK_EQ(EVP_CIPHER_iv_length(cipher), static_cast<int>(iv_.length()));
DCHECK_EQ(EVP_CIPHER_key_length(cipher), static_cast<int>(key.length()));
ScopedCipherCTX ctx;
if (!EVP_CipherInit_ex(ctx.get(), cipher, NULL,
reinterpret_cast<const uint8*>(key.data()),
reinterpret_cast<const uint8*>(iv_.data()),
do_encrypt))
return false;
// When encrypting, add another block size of space to allow for any padding.
const size_t output_size = input.size() + (do_encrypt ? iv_.size() : 0);
uint8* out_ptr = reinterpret_cast<uint8*>(WriteInto(&result,
output_size + 1));
int out_len;
if (!EVP_CipherUpdate(ctx.get(), out_ptr, &out_len,
reinterpret_cast<const uint8*>(input.data()),
input.length()))
return false;
// Write out the final block plus padding (if any) to the end of the data
// just written.
int tail_len;
if (!EVP_CipherFinal_ex(ctx.get(), out_ptr + out_len, &tail_len))
return false;
out_len += tail_len;
DCHECK_LE(out_len, static_cast<int>(output_size));
result.resize(out_len);
output->swap(result);
return true;
}
} // namespace base
|