summaryrefslogtreecommitdiffstats
path: root/base/crypto/rsa_private_key.cc
blob: 75da7e42b9093c2aa07efc1e78503f08ba2dc9b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/crypto/rsa_private_key.h"

#include <list>

#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "base/string_util.h"

// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
//
// PrivateKeyInfo ::= SEQUENCE {
//   version Version,
//   privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
//   privateKey PrivateKey,
//   attributes [0] IMPLICIT Attributes OPTIONAL
// }
//
// RSAPrivateKey ::= SEQUENCE {
//   version Version,
//   modulus INTEGER,
//   publicExponent INTEGER,
//   privateExponent INTEGER,
//   prime1 INTEGER,
//   prime2 INTEGER,
//   exponent1 INTEGER,
//   exponent2 INTEGER,
//   coefficient INTEGER
// }

namespace {
// Helper for error handling during key import.
#define READ_ASSERT(truth) \
  if (!(truth)) { \
    NOTREACHED(); \
    return false; \
  }
}  // namespace

namespace base {

const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
  0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
  0x05, 0x00
};

void PrivateKeyInfoCodec::PrependBytes(uint8* val,
                                       int start,
                                       int num_bytes,
                                       std::list<uint8>* data) {
  while (num_bytes > 0) {
    --num_bytes;
    data->push_front(val[start + num_bytes]);
  }
}

void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) {
  // The high bit is used to indicate whether additional octets are needed to
  // represent the length.
  if (size < 0x80) {
    data->push_front(static_cast<uint8>(size));
  } else {
    uint8 num_bytes = 0;
    while (size > 0) {
      data->push_front(static_cast<uint8>(size & 0xFF));
      size >>= 8;
      num_bytes++;
    }
    CHECK_LE(num_bytes, 4);
    data->push_front(0x80 | num_bytes);
  }
}

void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type,
                                                     uint32 length,
                                                     std::list<uint8>* output) {
  PrependLength(length, output);
  output->push_front(type);
}

void PrivateKeyInfoCodec::PrependBitString(uint8* val,
                                           int num_bytes,
                                           std::list<uint8>* output) {
  // Start with the data.
  PrependBytes(val, 0, num_bytes, output);
  // Zero unused bits.
  output->push_front(0);
  // Add the length.
  PrependLength(num_bytes + 1, output);
  // Finally, add the bit string tag.
  output->push_front((uint8) kBitStringTag);
}

bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) {
  READ_ASSERT(*pos < end);
  int length = 0;

  // If the MSB is not set, the length is just the byte itself.
  if (!(**pos & 0x80)) {
    length = **pos;
    (*pos)++;
  } else {
    // Otherwise, the lower 7 indicate the length of the length.
    int length_of_length = **pos & 0x7F;
    READ_ASSERT(length_of_length <= 4);
    (*pos)++;
    READ_ASSERT(*pos + length_of_length < end);

    length = 0;
    for (int i = 0; i < length_of_length; ++i) {
      length <<= 8;
      length |= **pos;
      (*pos)++;
    }
  }

  READ_ASSERT(*pos + length <= end);
  if (result) *result = length;
  return true;
}

bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos,
                                                  uint8* end,
                                                  uint8 expected_tag,
                                                  uint32* length) {
  READ_ASSERT(*pos < end);
  READ_ASSERT(**pos == expected_tag);
  (*pos)++;

  return ReadLength(pos, end, length);
}

bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) {
  return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
}

bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) {
  READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
  READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
                     sizeof(kRsaAlgorithmIdentifier)) == 0);
  (*pos) += sizeof(kRsaAlgorithmIdentifier);
  return true;
}

bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) {
  uint32 length = 0;
  if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
    return false;

  // The version should be zero.
  for (uint32 i = 0; i < length; ++i) {
    READ_ASSERT(**pos == 0x00);
    (*pos)++;
  }

  return true;
}

PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
    : big_endian_(big_endian) {}

PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}

bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) {
  std::list<uint8> content;

  // Version (always zero)
  uint8 version = 0;

  PrependInteger(coefficient_, &content);
  PrependInteger(exponent2_, &content);
  PrependInteger(exponent1_, &content);
  PrependInteger(prime2_, &content);
  PrependInteger(prime1_, &content);
  PrependInteger(private_exponent_, &content);
  PrependInteger(public_exponent_, &content);
  PrependInteger(modulus_, &content);
  PrependInteger(&version, 1, &content);
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
  PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);

  // RSA algorithm OID
  for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
    content.push_front(kRsaAlgorithmIdentifier[i - 1]);

  PrependInteger(&version, 1, &content);
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);

  // Copy everying into the output.
  output->reserve(content.size());
  for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
    output->push_back(*i);

  return true;
}

bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) {
  // Create a sequence with the modulus (n) and public exponent (e).
  std::list<uint8> content;
  PrependInteger(&public_exponent_[0],
                 static_cast<int>(public_exponent_.size()),
                 &content);
  PrependInteger(&modulus_[0],  static_cast<int>(modulus_.size()), &content);
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);

  // Copy the sequence with n and e into a buffer.
  std::vector<uint8> bit_string;
  for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
    bit_string.push_back(*i);
  content.clear();
  // Add the sequence as the contents of a bit string.
  PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
                   &content);

  // Add the RSA algorithm OID.
  for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
    content.push_front(kRsaAlgorithmIdentifier[i - 1]);

  // Finally, wrap everything in a sequence.
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);

  // Copy everything into the output.
  output->reserve(content.size());
  for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
    output->push_back(*i);

  return true;
}

bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) {
  if (input.empty()) {
    return false;
  }

  // Parse the private key info up to the public key values, ignoring
  // the subsequent private key values.
  uint8* src = const_cast<uint8*>(&input.front());
  uint8* end = src + input.size();
  if (!ReadSequence(&src, end) ||
      !ReadVersion(&src, end) ||
      !ReadAlgorithmIdentifier(&src, end) ||
      !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
      !ReadSequence(&src, end) ||
      !ReadVersion(&src, end) ||
      !ReadInteger(&src, end, &modulus_))
    return false;

  int mod_size = modulus_.size();
  READ_ASSERT(mod_size % 2 == 0);
  int primes_size = mod_size / 2;

  if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
      !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
      !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
      !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
      !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
      !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
      !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
    return false;

  READ_ASSERT(src == end);


  return true;
}

void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in,
                                         std::list<uint8>* out) {
  uint8* ptr = const_cast<uint8*>(&in.front());
  PrependIntegerImpl(ptr, in.size(), out, big_endian_);
}

// Helper to prepend an ASN.1 integer.
void PrivateKeyInfoCodec::PrependInteger(uint8* val,
                                         int num_bytes,
                                         std::list<uint8>* data) {
  PrependIntegerImpl(val, num_bytes, data, big_endian_);
}

void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val,
                                             int num_bytes,
                                             std::list<uint8>* data,
                                             bool big_endian) {
 // Reverse input if little-endian.
 std::vector<uint8> tmp;
 if (!big_endian) {
   tmp.assign(val, val + num_bytes);
   reverse(tmp.begin(), tmp.end());
   val = &tmp.front();
 }

  // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
  // from the most-significant end of the integer.
  int start = 0;
  while (start < (num_bytes - 1) && val[start] == 0x00) {
    start++;
    num_bytes--;
  }
  PrependBytes(val, start, num_bytes, data);

  // ASN.1 integers are signed. To encode a positive integer whose sign bit
  // (the most significant bit) would otherwise be set and make the number
  // negative, ASN.1 requires a leading null byte to force the integer to be
  // positive.
  uint8 front = data->front();
  if ((front & 0x80) != 0) {
    data->push_front(0x00);
    num_bytes++;
  }

  PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
}

bool PrivateKeyInfoCodec::ReadInteger(uint8** pos,
                                      uint8* end,
                                      std::vector<uint8>* out) {
  return ReadIntegerImpl(pos, end, out, big_endian_);
}

bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos,
                                          uint8* end,
                                          std::vector<uint8>* out,
                                          bool big_endian) {
  uint32 length = 0;
  if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
    return false;

  // The first byte can be zero to force positiveness. We can ignore this.
  if (**pos == 0x00) {
    ++(*pos);
    --length;
  }

  if (length)
    out->insert(out->end(), *pos, (*pos) + length);

  (*pos) += length;

  // Reverse output if little-endian.
  if (!big_endian)
    reverse(out->begin(), out->end());
  return true;
}

bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos,
                                                      uint8* end,
                                                      size_t expected_size,
                                                      std::vector<uint8>* out) {
  std::vector<uint8> temp;
  if (!ReadIntegerImpl(pos, end, &temp, true))  // Big-Endian
    return false;

  int pad = expected_size - temp.size();
  int index = 0;
  if (out->size() == expected_size + 1) {
    READ_ASSERT(out->front() == 0x00);
    pad++;
    index++;
  } else {
    READ_ASSERT(out->size() <= expected_size);
  }

  while (pad) {
    out->push_back(0x00);
    pad--;
  }
  out->insert(out->end(), temp.begin(), temp.end());

  // Reverse output if little-endian.
  if (!big_endian_)
    reverse(out->begin(), out->end());
  return true;
}

}  // namespace base