summaryrefslogtreecommitdiffstats
path: root/base/crypto/rsa_private_key_nss.cc
blob: f9f9a73d382a5e69869a51f450e41aa6492c4372 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/crypto/rsa_private_key.h"

#include <cryptohi.h>
#include <keyhi.h>
#include <pk11pub.h>

#include <iostream>
#include <list>

#include "base/logging.h"
#include "base/nss_init.h"
#include "base/scoped_ptr.h"
#include "base/string_util.h"

// TODO(rafaelw): Consider refactoring common functions and definitions from
// rsa_private_key_win.cc or using NSS's ASN.1 encoder.
namespace {

// ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
const uint8 kRsaAlgorithmIdentifier[] = {
  0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
  0x05, 0x00
};

// ASN.1 tags for some types we use.
const uint8 kSequenceTag = 0x30;
const uint8 kIntegerTag = 0x02;
const uint8 kNullTag = 0x05;
const uint8 kOctetStringTag = 0x04;

static void PrependBytesInOrder(uint8* val, int start, int num_bytes,
                                std::list<uint8>* data) {
  while(num_bytes > start) {
    --num_bytes;
    data->push_front(val[num_bytes]);
  }
}

// Helper to prepend an ASN.1 length field.
static void PrependLength(size_t size, std::list<uint8>* data) {
  // The high bit is used to indicate whether additional octets are needed to
  // represent the length.
  if (size < 0x80) {
    data->push_front(static_cast<uint8>(size));
  } else {
    uint8 num_bytes = 0;
    while (size > 0) {
      data->push_front(static_cast<uint8>(size & 0xFF));
      size >>= 8;
      num_bytes++;
    }
    CHECK(num_bytes <= 4);
    data->push_front(0x80 | num_bytes);
  }
}

// Helper to prepend an ASN.1 type header.
static void PrependTypeHeaderAndLength(uint8 type, uint32 length,
                                       std::list<uint8>* output) {
  PrependLength(length, output);
  output->push_front(type);
}

// Helper to prepend an ASN.1 integer.
static void PrependInteger(uint8* val, int num_bytes, std::list<uint8>* data) {
  // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
  // from the most-significant end of the integer.
  int start = 0;
  while (start < (num_bytes - 1) && val[start] == 0x00)
    start++;

  PrependBytesInOrder(val, start, num_bytes, data);

  // ASN.1 integers are signed. To encode a positive integer whose sign bit
  // (the most significant bit) would otherwise be set and make the number
  // negative, ASN.1 requires a leading null byte to force the integer to be
  // positive.
  if ((val[start] & 0x80) != 0) {
    data->push_front(0x00);
    num_bytes++;
  }

  PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
}

static bool ReadAttributeAndPrependInteger(SECKEYPrivateKey* key,
                                           CK_ATTRIBUTE_TYPE type,
                                           std::list<uint8>* output) {
  SECItem item;
  SECStatus rv;
  rv = PK11_ReadRawAttribute(PK11_TypePrivKey, key, type, &item);
  if (rv != SECSuccess) {
    NOTREACHED();
    return false;
  }

  PrependInteger(item.data, item.len, output);
  SECITEM_FreeItem(&item, PR_FALSE);
  return true;
}

}  // namespace


namespace base {

// static
RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) {
  scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);

  PK11SlotInfo *slot = PK11_GetInternalSlot();
  if (!slot)
    return NULL;

  PK11RSAGenParams param;
  param.keySizeInBits = num_bits;
  param.pe = 65537L;
  result->key_ = PK11_GenerateKeyPair(slot, CKM_RSA_PKCS_KEY_PAIR_GEN, &param,
      &result->public_key_, PR_FALSE, PR_FALSE, NULL);
  PK11_FreeSlot(slot);
  if (!result->key_)
    return NULL;

  return result.release();
}

// static
RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo(
    const std::vector<uint8>& input) {
  scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);

  PK11SlotInfo *slot = PK11_GetInternalSlot();
  if (!slot)
    return NULL;

  SECItem der_private_key_info;
  der_private_key_info.data = const_cast<unsigned char*>(&input.front());
  der_private_key_info.len = input.size();
  SECStatus rv =  PK11_ImportDERPrivateKeyInfoAndReturnKey(slot,
      &der_private_key_info, NULL, NULL, PR_FALSE, PR_FALSE,
      KU_DIGITAL_SIGNATURE, &result->key_, NULL);
  PK11_FreeSlot(slot);
  if (rv != SECSuccess) {
    NOTREACHED();
    return NULL;
  }

  result->public_key_ = SECKEY_ConvertToPublicKey(result->key_);
  if (!result->public_key_) {
    NOTREACHED();
    return NULL;
  }

  return result.release();
}

RSAPrivateKey::RSAPrivateKey() : key_(NULL), public_key_(NULL) {
  EnsureNSSInit();
}

RSAPrivateKey::~RSAPrivateKey() {
  if (key_)
    SECKEY_DestroyPrivateKey(key_);
  if (public_key_)
    SECKEY_DestroyPublicKey(public_key_);
}

bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8>* output) {
  std::list<uint8> content;

  // Version (always zero)
  uint8 version = 0;

  // Manually read the component attributes of the private key and build up the
  // output in reverse order to prevent having to do copies to figure out the
  // length.
  if (!ReadAttributeAndPrependInteger(key_, CKA_COEFFICIENT, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_EXPONENT_2, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_EXPONENT_1, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_PRIME_2, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_PRIME_1, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_PRIVATE_EXPONENT, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_PUBLIC_EXPONENT, &content) ||
      !ReadAttributeAndPrependInteger(key_, CKA_MODULUS, &content)) {
    NOTREACHED();
    return false;
  }
  PrependInteger(&version, 1, &content);
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
  PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);

  // RSA algorithm OID
  for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
    content.push_front(kRsaAlgorithmIdentifier[i - 1]);

  PrependInteger(&version, 1, &content);
  PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);

  // Copy everying into the output.
  output->reserve(content.size());
  for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
    output->push_back(*i);

  return true;
}

bool RSAPrivateKey::ExportPublicKey(std::vector<uint8>* output) {
  SECItem* der_pubkey = SECKEY_EncodeDERSubjectPublicKeyInfo(public_key_);
  if (!der_pubkey) {
    NOTREACHED();
    return false;
  }

  for (size_t i = 0; i < der_pubkey->len; ++i)
    output->push_back(der_pubkey->data[i]);

  SECITEM_FreeItem(der_pubkey, PR_TRUE);
  return true;
}

}  // namespace base