summaryrefslogtreecommitdiffstats
path: root/base/crypto/rsa_private_key_win.cc
blob: 40aa80acec3a65ce4441f20b1e2e3f88180df284 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/crypto/rsa_private_key.h"

#include <iostream>
#include <list>

#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "base/string_util.h"

namespace {
  // Helper for error handling during key import.
#define READ_ASSERT(truth) \
  if (!(truth)) { \
  NOTREACHED(); \
  return false; \
  }
}  // namespace

namespace base {

// static
RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) {
  scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
  if (!result->InitProvider())
    return NULL;

  DWORD flags = CRYPT_EXPORTABLE;

  // The size is encoded as the upper 16 bits of the flags. :: sigh ::.
  flags |= (num_bits << 16);
  if (!CryptGenKey(result->provider_, CALG_RSA_SIGN, flags,
                   result->key_.receive()))
    return NULL;

  return result.release();
}

// static
RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo(
    const std::vector<uint8>& input) {
  scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
  if (!result->InitProvider())
    return NULL;

  PrivateKeyInfoCodec pki(false);  // Little-Endian
  pki.Import(input);

  int blob_size = sizeof(PUBLICKEYSTRUC) +
                  sizeof(RSAPUBKEY) +
                  pki.modulus()->size() +
                  pki.prime1()->size() +
                  pki.prime2()->size() +
                  pki.exponent1()->size() +
                  pki.exponent2()->size() +
                  pki.coefficient()->size() +
                  pki.private_exponent()->size();
  scoped_array<BYTE> blob(new BYTE[blob_size]);

  uint8* dest = blob.get();
  PUBLICKEYSTRUC* public_key_struc = reinterpret_cast<PUBLICKEYSTRUC*>(dest);
  public_key_struc->bType = PRIVATEKEYBLOB;
  public_key_struc->bVersion = 0x02;
  public_key_struc->reserved = 0;
  public_key_struc->aiKeyAlg = CALG_RSA_SIGN;
  dest += sizeof(PUBLICKEYSTRUC);

  RSAPUBKEY* rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(dest);
  rsa_pub_key->magic = 0x32415352;
  rsa_pub_key->bitlen = pki.modulus()->size() * 8;
  int public_exponent_int = 0;
  for (size_t i = pki.public_exponent()->size(); i > 0; --i) {
    public_exponent_int <<= 8;
    public_exponent_int |= (*pki.public_exponent())[i - 1];
  }
  rsa_pub_key->pubexp = public_exponent_int;
  dest += sizeof(RSAPUBKEY);

  memcpy(dest, &pki.modulus()->front(), pki.modulus()->size());
  dest += pki.modulus()->size();
  memcpy(dest, &pki.prime1()->front(), pki.prime1()->size());
  dest += pki.prime1()->size();
  memcpy(dest, &pki.prime2()->front(), pki.prime2()->size());
  dest += pki.prime2()->size();
  memcpy(dest, &pki.exponent1()->front(), pki.exponent1()->size());
  dest += pki.exponent1()->size();
  memcpy(dest, &pki.exponent2()->front(), pki.exponent2()->size());
  dest += pki.exponent2()->size();
  memcpy(dest, &pki.coefficient()->front(), pki.coefficient()->size());
  dest += pki.coefficient()->size();
  memcpy(dest, &pki.private_exponent()->front(), pki.private_exponent()->size());
  dest += pki.private_exponent()->size();

  READ_ASSERT(dest == blob.get() + blob_size);
  if (!CryptImportKey(
      result->provider_, reinterpret_cast<uint8*>(public_key_struc),
      blob_size, NULL, CRYPT_EXPORTABLE, result->key_.receive())) {
    return NULL;
  }

  return result.release();
}

RSAPrivateKey::RSAPrivateKey() : provider_(NULL), key_(NULL) {}

RSAPrivateKey::~RSAPrivateKey() {}

bool RSAPrivateKey::InitProvider() {
  return FALSE != CryptAcquireContext(provider_.receive(), NULL, NULL,
                                      PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
}

bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8>* output) {
  // Export the key
  DWORD blob_length = 0;
  if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, NULL, &blob_length)) {
    NOTREACHED();
    return false;
  }

  scoped_array<uint8> blob(new uint8[blob_length]);
  if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, blob.get(),
                      &blob_length)) {
    NOTREACHED();
    return false;
  }

  uint8* pos = blob.get();
  PUBLICKEYSTRUC *publickey_struct = reinterpret_cast<PUBLICKEYSTRUC*>(pos);
  pos += sizeof(PUBLICKEYSTRUC);

  RSAPUBKEY *rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(pos);
  pos += sizeof(RSAPUBKEY);

  int mod_size = rsa_pub_key->bitlen / 8;
  int primes_size = rsa_pub_key->bitlen / 16;

  PrivateKeyInfoCodec pki(false);  // Little-Endian

  pki.modulus()->assign(pos, pos + mod_size);
  pos += mod_size;

  pki.prime1()->assign(pos, pos + primes_size);
  pos += primes_size;
  pki.prime2()->assign(pos, pos + primes_size);
  pos += primes_size;

  pki.exponent1()->assign(pos, pos + primes_size);
  pos += primes_size;
  pki.exponent2()->assign(pos, pos + primes_size);
  pos += primes_size;

  pki.coefficient()->assign(pos, pos + primes_size);
  pos += primes_size;

  pki.private_exponent()->assign(pos, pos + mod_size);
  pos += mod_size;

  pki.public_exponent()->assign(reinterpret_cast<uint8*>(&rsa_pub_key->pubexp),
      reinterpret_cast<uint8*>(&rsa_pub_key->pubexp) + 4);

  CHECK_EQ(pos - blob_length, reinterpret_cast<BYTE*>(publickey_struct));

  return pki.Export(output);
}

bool RSAPrivateKey::ExportPublicKey(std::vector<uint8>* output) {
  DWORD key_info_len;
  if (!CryptExportPublicKeyInfo(
      provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
      NULL, &key_info_len)) {
    NOTREACHED();
    return false;
  }

  scoped_array<uint8> key_info(new uint8[key_info_len]);
  if (!CryptExportPublicKeyInfo(
      provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
      reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), &key_info_len)) {
    NOTREACHED();
    return false;
  }

  DWORD encoded_length;
  if (!CryptEncodeObject(
      X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
      reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), NULL,
      &encoded_length)) {
    NOTREACHED();
    return false;
  }

  scoped_array<BYTE> encoded(new BYTE[encoded_length]);
  if (!CryptEncodeObject(
      X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
      reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), encoded.get(),
      &encoded_length)) {
    NOTREACHED();
    return false;
  }

  for (size_t i = 0; i < encoded_length; ++i)
    output->push_back(encoded[i]);

  return true;
}

}  // namespace base