1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/crypto/rsa_private_key.h"
#include <list>
#include "base/logging.h"
#include "base/scoped_ptr.h"
// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
//
// PrivateKeyInfo ::= SEQUENCE {
// version Version,
// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
// privateKey PrivateKey,
// attributes [0] IMPLICIT Attributes OPTIONAL
// }
//
// RSAPrivateKey ::= SEQUENCE {
// version Version,
// modulus INTEGER,
// publicExponent INTEGER,
// privateExponent INTEGER,
// prime1 INTEGER,
// prime2 INTEGER,
// exponent1 INTEGER,
// exponent2 INTEGER,
// coefficient INTEGER
// }
namespace {
// ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
const uint8 kRsaAlgorithmIdentifier[] = {
0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
0x05, 0x00
};
// ASN.1 tags for some types we use.
const uint8 kSequenceTag = 0x30;
const uint8 kIntegerTag = 0x02;
const uint8 kNullTag = 0x05;
const uint8 kOctetStringTag = 0x04;
// Helper function to prepend an array of bytes into a list, reversing their
// order. This is needed because ASN.1 integers are big-endian, while CryptoAPI
// uses little-endian.
static void PrependBytesInReverseOrder(uint8* val, int num_bytes,
std::list<uint8>* data) {
for (int i = 0; i < num_bytes; ++i)
data->push_front(val[i]);
}
// Helper to prepend an ASN.1 length field.
static void PrependLength(size_t size, std::list<uint8>* data) {
// The high bit is used to indicate whether additional octets are needed to
// represent the length.
if (size < 0x80) {
data->push_front(static_cast<uint8>(size));
} else {
uint8 num_bytes = 0;
while (size > 0) {
data->push_front(static_cast<uint8>(size & 0xFF));
size >>= 8;
num_bytes++;
}
CHECK(num_bytes <= 4);
data->push_front(0x80 | num_bytes);
}
}
// Helper to prepend an ASN.1 type header.
static void PrependTypeHeaderAndLength(uint8 type, uint32 length,
std::list<uint8>* output) {
PrependLength(length, output);
output->push_front(type);
}
// Helper to prepend an ASN.1 integer.
static void PrependInteger(uint8* val, int num_bytes, std::list<uint8>* data) {
// If the MSB is set, we are supposed to add an extra null byte at the front.
bool needs_null_byte = (val[num_bytes - 1] & 0x80) != 0;
int length = needs_null_byte ? num_bytes + 1 : num_bytes;
PrependBytesInReverseOrder(val, num_bytes, data);
// Add a null byte to force the integer to be positive if necessary.
if (needs_null_byte)
data->push_front(0x00);
PrependTypeHeaderAndLength(kIntegerTag, length, data);
}
// Helper for error handling during key import.
#define READ_ASSERT(truth) \
if (!(truth)) { \
NOTREACHED(); \
return false; \
}
// Read an ASN.1 length field. This also checks that the length does not extend
// beyond |end|.
static bool ReadLength(uint8** pos, uint8* end, uint32* result) {
READ_ASSERT(*pos < end);
int length = 0;
// If the MSB is not set, the length is just the byte itself.
if (!(**pos & 0x80)) {
length = **pos;
(*pos)++;
} else {
// Otherwise, the lower 7 indicate the length of the length.
int length_of_length = **pos & 0x7F;
READ_ASSERT(length_of_length <= 4);
(*pos)++;
READ_ASSERT(*pos + length_of_length < end);
length = 0;
for (int i = 0; i < length_of_length; ++i) {
length <<= 8;
length |= **pos;
(*pos)++;
}
}
READ_ASSERT(*pos + length <= end);
if (result) *result = length;
return true;
}
// Read an ASN.1 type header and its length.
static bool ReadTypeHeaderAndLength(uint8** pos, uint8* end,
uint8 expected_tag, uint32* length) {
READ_ASSERT(*pos < end);
READ_ASSERT(**pos == expected_tag);
(*pos)++;
return ReadLength(pos, end, length);
}
// Read an ASN.1 sequence declaration. This consumes the type header and length
// field, but not the contents of the sequence.
static bool ReadSequence(uint8** pos, uint8* end) {
return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
}
// Read the RSA AlgorithmIdentifier.
static bool ReadAlgorithmIdentifier(uint8** pos, uint8* end) {
READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
sizeof(kRsaAlgorithmIdentifier)) == 0);
(*pos) += sizeof(kRsaAlgorithmIdentifier);
return true;
}
// Read one of the two version fields in PrivateKeyInfo.
static bool ReadVersion(uint8** pos, uint8* end) {
uint32 length = 0;
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
return false;
// The version should be zero.
for (uint32 i = 0; i < length; ++i) {
READ_ASSERT(**pos == 0x00);
(*pos)++;
}
return true;
}
// Read an ASN.1 integer.
static bool ReadInteger(uint8** pos, uint8* end, std::vector<uint8>* out) {
uint32 length = 0;
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
return false;
// Read the bytes out in reverse order because of endianness.
for (uint32 i = length - 1; i > 0; --i)
out->push_back(*(*pos + i));
// The last byte can be zero to force positiveness. We can ignore this.
if (**pos != 0x00)
out->push_back(**pos);
(*pos) += length;
return true;
}
} // namespace
namespace base {
// static
RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) {
scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
if (!result->InitProvider())
return NULL;
DWORD flags = CRYPT_EXPORTABLE;
// The size is encoded as the upper 16 bits of the flags. :: sigh ::.
flags |= (num_bits << 16);
if (!CryptGenKey(result->provider_, CALG_RSA_SIGN, flags, &result->key_))
return NULL;
return result.release();
}
// static
RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo(
const std::vector<uint8>& input) {
scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
if (!result->InitProvider())
return NULL;
uint8* src = const_cast<uint8*>(&input.front());
uint8* end = src + input.size();
int version = -1;
std::vector<uint8> modulus;
std::vector<uint8> public_exponent;
std::vector<uint8> private_exponent;
std::vector<uint8> prime1;
std::vector<uint8> prime2;
std::vector<uint8> exponent1;
std::vector<uint8> exponent2;
std::vector<uint8> coefficient;
if (!ReadSequence(&src, end) ||
!ReadVersion(&src, end) ||
!ReadAlgorithmIdentifier(&src, end) ||
!ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
!ReadSequence(&src, end) ||
!ReadVersion(&src, end) ||
!ReadInteger(&src, end, &modulus) ||
!ReadInteger(&src, end, &public_exponent) ||
!ReadInteger(&src, end, &private_exponent) ||
!ReadInteger(&src, end, &prime1) ||
!ReadInteger(&src, end, &prime2) ||
!ReadInteger(&src, end, &exponent1) ||
!ReadInteger(&src, end, &exponent2) ||
!ReadInteger(&src, end, &coefficient))
return false;
READ_ASSERT(src == end);
int blob_size = sizeof(PUBLICKEYSTRUC) + sizeof(RSAPUBKEY) + modulus.size() +
prime1.size() + prime2.size() +
exponent1.size() + exponent2.size() +
coefficient.size() + private_exponent.size();
scoped_array<BYTE> blob(new BYTE[blob_size]);
uint8* dest = blob.get();
PUBLICKEYSTRUC* public_key_struc = reinterpret_cast<PUBLICKEYSTRUC*>(dest);
public_key_struc->bType = PRIVATEKEYBLOB;
public_key_struc->bVersion = 0x02;
public_key_struc->reserved = 0;
public_key_struc->aiKeyAlg = CALG_RSA_SIGN;
dest += sizeof(PUBLICKEYSTRUC);
RSAPUBKEY* rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(dest);
rsa_pub_key->magic = 0x32415352;
rsa_pub_key->bitlen = modulus.size() * 8;
int public_exponent_int = 0;
for (size_t i = public_exponent.size(); i > 0; --i) {
public_exponent_int <<= 8;
public_exponent_int |= public_exponent[i - 1];
}
rsa_pub_key->pubexp = public_exponent_int;
dest += sizeof(RSAPUBKEY);
memcpy(dest, &modulus.front(), modulus.size());
dest += modulus.size();
memcpy(dest, &prime1.front(), prime1.size());
dest += prime1.size();
memcpy(dest, &prime2.front(), prime2.size());
dest += prime2.size();
memcpy(dest, &exponent1.front(), exponent1.size());
dest += exponent1.size();
memcpy(dest, &exponent2.front(), exponent2.size());
dest += exponent2.size();
memcpy(dest, &coefficient.front(), coefficient.size());
dest += coefficient.size();
memcpy(dest, &private_exponent.front(), private_exponent.size());
dest += private_exponent.size();
READ_ASSERT(dest == blob.get() + blob_size);
if (!CryptImportKey(
result->provider_, reinterpret_cast<uint8*>(public_key_struc), blob_size,
NULL, CRYPT_EXPORTABLE, &result->key_)) {
return NULL;
}
return result.release();
}
RSAPrivateKey::RSAPrivateKey() : provider_(NULL), key_(NULL) {}
RSAPrivateKey::~RSAPrivateKey() {
if (key_) {
if (!CryptDestroyKey(key_))
NOTREACHED();
}
if (provider_) {
if (!CryptReleaseContext(provider_, 0))
NOTREACHED();
}
}
bool RSAPrivateKey::InitProvider() {
return FALSE != CryptAcquireContext(&provider_, NULL, NULL,
PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
}
bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8>* output) {
// Export the key
DWORD blob_length = 0;
if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, NULL, &blob_length)) {
NOTREACHED();
return false;
}
scoped_array<uint8> blob(new uint8[blob_length]);
if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, blob.get(),
&blob_length)) {
NOTREACHED();
return false;
}
uint8* pos = blob.get();
PUBLICKEYSTRUC *publickey_struct = reinterpret_cast<PUBLICKEYSTRUC*>(pos);
pos += sizeof(PUBLICKEYSTRUC);
RSAPUBKEY *rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(pos);
pos += sizeof(RSAPUBKEY);
int mod_size = rsa_pub_key->bitlen / 8;
int primes_size = rsa_pub_key->bitlen / 16;
int exponents_size = primes_size;
int coefficient_size = primes_size;
int private_exponent_size = mod_size;
uint8* modulus = pos;
pos += mod_size;
uint8* prime1 = pos;
pos += primes_size;
uint8* prime2 = pos;
pos += primes_size;
uint8* exponent1 = pos;
pos += exponents_size;
uint8* exponent2 = pos;
pos += exponents_size;
uint8* coefficient = pos;
pos += coefficient_size;
uint8* private_exponent = pos;
pos += private_exponent_size;
CHECK((pos - blob_length) == reinterpret_cast<BYTE*>(publickey_struct));
std::list<uint8> content;
// Version (always zero)
uint8 version = 0;
// We build up the output in reverse order to prevent having to do copies to
// figure out the length.
PrependInteger(coefficient, coefficient_size, &content);
PrependInteger(exponent2, exponents_size, &content);
PrependInteger(exponent1, exponents_size, &content);
PrependInteger(prime2, primes_size, &content);
PrependInteger(prime1, primes_size, &content);
PrependInteger(private_exponent, private_exponent_size, &content);
PrependInteger(reinterpret_cast<uint8*>(&rsa_pub_key->pubexp), 4, &content);
PrependInteger(modulus, mod_size, &content);
PrependInteger(&version, 1, &content);
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
// RSA algorithm OID
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
PrependInteger(&version, 1, &content);
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
// Copy everying into the output.
output->reserve(content.size());
for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
output->push_back(*i);
return true;
}
bool RSAPrivateKey::ExportPublicKey(std::vector<uint8>* output) {
DWORD key_info_len;
if (!CryptExportPublicKeyInfo(
provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
NULL, &key_info_len)) {
NOTREACHED();
return false;
}
scoped_array<uint8> key_info(new uint8[key_info_len]);
if (!CryptExportPublicKeyInfo(
provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), &key_info_len)) {
NOTREACHED();
return false;
}
DWORD encoded_length;
if (!CryptEncodeObject(
X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), NULL,
&encoded_length)) {
NOTREACHED();
return false;
}
scoped_array<BYTE> encoded(new BYTE[encoded_length]);
if (!CryptEncodeObject(
X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), encoded.get(),
&encoded_length)) {
NOTREACHED();
return false;
}
for (size_t i = 0; i < encoded_length; ++i)
output->push_back(encoded[i]);
return true;
}
} // namespace base
|