summaryrefslogtreecommitdiffstats
path: root/base/gfx/bitmap_platform_device_win.cc
blob: d7150b1c72446161f1998ec80229bbb545699b82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/gfx/bitmap_platform_device_win.h"

#include "base/gfx/gdi_util.h"
#include "base/logging.h"
#include "base/process_util.h"
#include "SkMatrix.h"
#include "SkRegion.h"
#include "SkUtils.h"

namespace gfx {

// When Windows draws text, is sets the fourth byte (which Skia uses for alpha)
// to zero. This means that if we try compositing with text that Windows has
// drawn, we get invalid color values (if the alpha is 0, the other channels
// should be 0 since Skia uses premultiplied colors) and strange results.
//
// HTML rendering only requires one bit of transparency. When you ask for a
// semitransparent div, the div itself is drawn in another layer as completely
// opaque, and then composited onto the lower layer with a transfer function.
// The only place an alpha channel is needed is to track what has been drawn
// and what has not been drawn.
//
// Therefore, when we allocate a new device, we fill it with this special
// color. Because Skia uses premultiplied colors, any color where the alpha
// channel is smaller than any component is impossible, so we know that no
// legitimate drawing will produce this color. We use 1 as the alpha value
// because 0 is produced when Windows draws text (even though it should be
// opaque).
//
// When a layer is done and we want to render it to a lower layer, we use
// fixupAlphaBeforeCompositing. This replaces all 0 alpha channels with
// opaque (to fix the text problem), and replaces this magic color value
// with transparency. The result is something that can be correctly
// composited. However, once this has been done, no more can be drawn to
// the layer because fixing the alphas *again* will result in incorrect
// values.
static const uint32_t kMagicTransparencyColor = 0x01FFFEFD;

namespace {

// Constrains position and size to fit within available_size. If |size| is -1,
// all the available_size is used. Returns false if the position is out of
// available_size.
bool Constrain(int available_size, int* position, int *size) {
  if (*size < -2)
    return false;

  if (*position < 0) {
    if (*size != -1)
      *size += *position;
    *position = 0;
  }
  if (*size == 0 || *position >= available_size)
    return false;

  if (*size > 0) {
    int overflow = (*position + *size) - available_size;
    if (overflow > 0) {
      *size -= overflow;
    }
  } else {
    // Fill up available size.
    *size = available_size - *position;
  }
  return true;
}

// If the pixel value is 0, it gets set to kMagicTransparencyColor.
void PrepareAlphaForGDI(uint32_t* pixel) {
  if (*pixel == 0) {
    *pixel = kMagicTransparencyColor;
  }
}

// If the pixel value is kMagicTransparencyColor, it gets set to 0. Otherwise
// if the alpha is 0, the alpha is set to 255.
void PostProcessAlphaForGDI(uint32_t* pixel) {
  if (*pixel == kMagicTransparencyColor) {
    *pixel = 0;
  } else if ((*pixel & 0xFF000000) == 0) {
    *pixel |= 0xFF000000;
  }
}

// Sets the opacity of the specified value to 0xFF.
void MakeOpaqueAlphaAdjuster(uint32_t* pixel) {
  *pixel |= 0xFF000000;
}

// See the declaration of kMagicTransparencyColor at the top of the file.
void FixupAlphaBeforeCompositing(uint32_t* pixel) {
  if (*pixel == kMagicTransparencyColor)
    *pixel = 0;
  else
    *pixel |= 0xFF000000;
}

// Crashes the process. This is called when a bitmap allocation fails, and this
// function tries to determine why it might have failed, and crash on different
// lines. This allows us to see in crash dumps the most likely reason for the
// failure. It takes the size of the bitmap we were trying to allocate as its
// arguments so we can check that as well.
void CrashForBitmapAllocationFailure(int w, int h) {
  // The maximum number of GDI objects per process is 10K. If we're very close
  // to that, it's probably the problem.
  const int kLotsOfGDIObjs = 9990;
  CHECK(GetGuiResources(GetCurrentProcess(), GR_GDIOBJECTS) < kLotsOfGDIObjs);

  // If the bitmap is ginormous, then we probably can't allocate it.
  // We use 64M pixels = 256MB @ 4 bytes per pixel.
  const int64 kGinormousBitmapPxl = 64000000;
  CHECK(static_cast<int64>(w) * static_cast<int64>(h) < kGinormousBitmapPxl);

  // If we're using a crazy amount of virtual address space, then maybe there
  // isn't enough for our bitmap.
  const int64 kLotsOfMem = 1500000000;  // 1.5GB.
  scoped_ptr<process_util::ProcessMetrics> process_metrics(
      process_util::ProcessMetrics::CreateProcessMetrics(GetCurrentProcess()));
  CHECK(process_metrics->GetPagefileUsage() < kLotsOfMem);

  // Everything else.
  CHECK(0);
}

}  // namespace

class BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData
    : public base::RefCounted<BitmapPlatformDeviceWinData> {
 public:
  explicit BitmapPlatformDeviceWinData(HBITMAP hbitmap);

  // Create/destroy hdc_, which is the memory DC for our bitmap data.
  HDC GetBitmapDC();
  void ReleaseBitmapDC();
  bool IsBitmapDCCreated() const;

  // Sets the transform and clip operations. This will not update the DC,
  // but will mark the config as dirty. The next call of LoadConfig will
  // pick up these changes.
  void SetMatrixClip(const SkMatrix& transform, const SkRegion& region);

  const SkMatrix& transform() const {
    return transform_;
  }

 protected:
  // Loads the current transform and clip into the DC. Can be called even when
  // the DC is NULL (will be a NOP).
  void LoadConfig();

  // Windows bitmap corresponding to our surface.
  HBITMAP hbitmap_;

  // Lazily-created DC used to draw into the bitmap, see getBitmapDC.
  HDC hdc_;

  // True when there is a transform or clip that has not been set to the DC.
  // The DC is retrieved for every text operation, and the transform and clip
  // do not change as much. We can save time by not loading the clip and
  // transform for every one.
  bool config_dirty_;

  // Translation assigned to the DC: we need to keep track of this separately
  // so it can be updated even if the DC isn't created yet.
  SkMatrix transform_;

  // The current clipping
  SkRegion clip_region_;

 private:
  friend class base::RefCounted<BitmapPlatformDeviceWinData>;
  ~BitmapPlatformDeviceWinData();

  DISALLOW_EVIL_CONSTRUCTORS(BitmapPlatformDeviceWinData);
};

BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::BitmapPlatformDeviceWinData(
    HBITMAP hbitmap)
    : hbitmap_(hbitmap),
      hdc_(NULL),
      config_dirty_(true) {  // Want to load the config next time.
  // Initialize the clip region to the entire bitmap.
  BITMAP bitmap_data;
  if (GetObject(hbitmap_, sizeof(BITMAP), &bitmap_data)) {
    SkIRect rect;
    rect.set(0, 0, bitmap_data.bmWidth, bitmap_data.bmHeight);
    clip_region_ = SkRegion(rect);
  }

  transform_.reset();
}

BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::~BitmapPlatformDeviceWinData() {
  if (hdc_)
    ReleaseBitmapDC();

  // this will free the bitmap data as well as the bitmap handle
  DeleteObject(hbitmap_);
}

HDC BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::GetBitmapDC() {
  if (!hdc_) {
    hdc_ = CreateCompatibleDC(NULL);
    InitializeDC(hdc_);
    HGDIOBJ old_bitmap = SelectObject(hdc_, hbitmap_);
    // When the memory DC is created, its display surface is exactly one
    // monochrome pixel wide and one monochrome pixel high. Since we select our
    // own bitmap, we must delete the previous one.
    DeleteObject(old_bitmap);
  }

  LoadConfig();
  return hdc_;
}

void BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::ReleaseBitmapDC() {
  DCHECK(hdc_);
  DeleteDC(hdc_);
  hdc_ = NULL;
}

bool BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::IsBitmapDCCreated()
    const {
  return hdc_ != NULL;
}


void BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::SetMatrixClip(
    const SkMatrix& transform,
    const SkRegion& region) {
  transform_ = transform;
  clip_region_ = region;
  config_dirty_ = true;
}

void BitmapPlatformDeviceWin::BitmapPlatformDeviceWinData::LoadConfig() {
  if (!config_dirty_ || !hdc_)
    return;  // Nothing to do.
  config_dirty_ = false;

  // Transform.
  SkMatrix t(transform_);
  LoadTransformToDC(hdc_, t);
  // We don't use transform_ for the clipping region since the translation is
  // already applied to offset_x_ and offset_y_.
  t.reset();
  LoadClippingRegionToDC(hdc_, clip_region_, t);
}

// We use this static factory function instead of the regular constructor so
// that we can create the pixel data before calling the constructor. This is
// required so that we can call the base class' constructor with the pixel
// data.
BitmapPlatformDeviceWin* BitmapPlatformDeviceWin::create(HDC screen_dc,
                                                   int width,
                                                   int height,
                                                   bool is_opaque,
                                                   HANDLE shared_section) {
  SkBitmap bitmap;

  // CreateDIBSection appears to get unhappy if we create an empty bitmap, so
  // we just expand it here.
  if (width == 0)
    width = 1;
  if (height == 0)
    height = 1;

  BITMAPINFOHEADER hdr;
  CreateBitmapHeader(width, height, &hdr);

  void* data;
  HBITMAP hbitmap = CreateDIBSection(screen_dc,
                                     reinterpret_cast<BITMAPINFO*>(&hdr), 0,
                                     &data,
                                     shared_section, 0);

  // If we run out of GDI objects or some other error occurs, we won't get a
  // bitmap here. This will cause us to crash later because the data pointer is
  // NULL. To make sure that we can assign blame for those crashes to this code,
  // we deliberately crash here, even in release mode.
  if (!hbitmap)
    CrashForBitmapAllocationFailure(width, height);

  bitmap.setConfig(SkBitmap::kARGB_8888_Config, width, height);
  bitmap.setPixels(data);
  bitmap.setIsOpaque(is_opaque);

  if (is_opaque) {
#ifndef NDEBUG
    // To aid in finding bugs, we set the background color to something
    // obviously wrong so it will be noticable when it is not cleared
    bitmap.eraseARGB(255, 0, 255, 128);  // bright bluish green
#endif
  } else {
    // A transparent layer is requested: fill with our magic "transparent"
    // color, see the declaration of kMagicTransparencyColor above
    sk_memset32(static_cast<uint32_t*>(data), kMagicTransparencyColor,
                width * height);
  }

  // The device object will take ownership of the HBITMAP.
  return new BitmapPlatformDeviceWin(new BitmapPlatformDeviceWinData(hbitmap),
                                     bitmap);
}

// The device will own the HBITMAP, which corresponds to also owning the pixel
// data. Therefore, we do not transfer ownership to the SkDevice's bitmap.
BitmapPlatformDeviceWin::BitmapPlatformDeviceWin(
    BitmapPlatformDeviceWinData* data,
    const SkBitmap& bitmap) : PlatformDeviceWin(bitmap), data_(data) {
}

// The copy constructor just adds another reference to the underlying data.
// We use a const cast since the default Skia definitions don't define the
// proper constedness that we expect (accessBitmap should really be const).
BitmapPlatformDeviceWin::BitmapPlatformDeviceWin(
    const BitmapPlatformDeviceWin& other)
    : PlatformDeviceWin(
          const_cast<BitmapPlatformDeviceWin&>(other).accessBitmap(true)),
      data_(other.data_) {
}

BitmapPlatformDeviceWin::~BitmapPlatformDeviceWin() {
}

BitmapPlatformDeviceWin& BitmapPlatformDeviceWin::operator=(
    const BitmapPlatformDeviceWin& other) {
  data_ = other.data_;
  return *this;
}

HDC BitmapPlatformDeviceWin::getBitmapDC() {
  return data_->GetBitmapDC();
}

void BitmapPlatformDeviceWin::setMatrixClip(const SkMatrix& transform,
                                         const SkRegion& region) {
  data_->SetMatrixClip(transform, region);
}

void BitmapPlatformDeviceWin::drawToHDC(HDC dc, int x, int y,
                                     const RECT* src_rect) {
  bool created_dc = !data_->IsBitmapDCCreated();
  HDC source_dc = getBitmapDC();

  RECT temp_rect;
  if (!src_rect) {
    temp_rect.left = 0;
    temp_rect.right = width();
    temp_rect.top = 0;
    temp_rect.bottom = height();
    src_rect = &temp_rect;
  }

  int copy_width = src_rect->right - src_rect->left;
  int copy_height = src_rect->bottom - src_rect->top;

  // We need to reset the translation for our bitmap or (0,0) won't be in the
  // upper left anymore
  SkMatrix identity;
  identity.reset();

  LoadTransformToDC(source_dc, identity);
  if (isOpaque()) {
    BitBlt(dc,
           x,
           y,
           copy_width,
           copy_height,
           source_dc,
           src_rect->left,
           src_rect->top,
           SRCCOPY);
  } else {
    BLENDFUNCTION blend_function = {AC_SRC_OVER, 0, 255, AC_SRC_ALPHA};
    AlphaBlend(dc,
               x,
               y,
               copy_width,
               copy_height,
               source_dc,
               src_rect->left,
               src_rect->top,
               copy_width,
               copy_height,
               blend_function);
  }
  LoadTransformToDC(source_dc, data_->transform());

  if (created_dc)
    data_->ReleaseBitmapDC();
}

void BitmapPlatformDeviceWin::prepareForGDI(int x, int y, int width,
                                            int height) {
  processPixels<PrepareAlphaForGDI>(x, y, width, height);
}

void BitmapPlatformDeviceWin::postProcessGDI(int x, int y, int width,
                                             int height) {
  processPixels<PostProcessAlphaForGDI>(x, y, width, height);
}

void BitmapPlatformDeviceWin::makeOpaque(int x, int y, int width, int height) {
  processPixels<MakeOpaqueAlphaAdjuster>(x, y, width, height);
}

void BitmapPlatformDeviceWin::fixupAlphaBeforeCompositing() {
  const SkBitmap& bitmap = accessBitmap(true);
  SkAutoLockPixels lock(bitmap);
  uint32_t* data = bitmap.getAddr32(0, 0);

  size_t words = bitmap.rowBytes() / sizeof(uint32_t) * bitmap.height();
  for (size_t i = 0; i < words; i++) {
    if (data[i] == kMagicTransparencyColor)
      data[i] = 0;
    else
      data[i] |= 0xFF000000;
  }
}

// Returns the color value at the specified location.
SkColor BitmapPlatformDeviceWin::getColorAt(int x, int y) {
  const SkBitmap& bitmap = accessBitmap(false);
  SkAutoLockPixels lock(bitmap);
  uint32_t* data = bitmap.getAddr32(0, 0);
  return static_cast<SkColor>(data[x + y * width()]);
}

void BitmapPlatformDeviceWin::onAccessBitmap(SkBitmap* bitmap) {
  // FIXME(brettw) OPTIMIZATION: We should only flush if we know a GDI
  // operation has occurred on our DC.
  if (data_->IsBitmapDCCreated())
    GdiFlush();
}

template<BitmapPlatformDeviceWin::adjustAlpha adjustor>
void BitmapPlatformDeviceWin::processPixels(int x,
                                   int y,
                                   int width,
                                   int height) {
  const SkBitmap& bitmap = accessBitmap(true);
  DCHECK_EQ(bitmap.config(), SkBitmap::kARGB_8888_Config);
  const SkMatrix& matrix = data_->transform();
  int bitmap_start_x = SkScalarRound(matrix.getTranslateX()) + x;
  int bitmap_start_y = SkScalarRound(matrix.getTranslateY()) + y;

  if (Constrain(bitmap.width(), &bitmap_start_x, &width) &&
      Constrain(bitmap.height(), &bitmap_start_y, &height)) {
    SkAutoLockPixels lock(bitmap);
    DCHECK_EQ(bitmap.rowBytes() % sizeof(uint32_t), 0u);
    size_t row_words = bitmap.rowBytes() / sizeof(uint32_t);
    // Set data to the first pixel to be modified.
    uint32_t* data = bitmap.getAddr32(0, 0) + (bitmap_start_y * row_words) +
                     bitmap_start_x;
    for (int i = 0; i < height; i++) {
      for (int j = 0; j < width; j++) {
        adjustor(data + j);
      }
      data += row_words;
    }
  }
}

}  // namespace gfx