1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_ID_MAP_H_
#define BASE_ID_MAP_H_
#include <set>
#include "base/basictypes.h"
#include "base/hash_tables.h"
#include "base/logging.h"
#include "base/threading/non_thread_safe.h"
// Ownership semantics - own pointer means the pointer is deleted in Remove()
// & during destruction
enum IDMapOwnershipSemantics {
IDMapExternalPointer,
IDMapOwnPointer
};
// This object maintains a list of IDs that can be quickly converted to
// pointers to objects. It is implemented as a hash table, optimized for
// relatively small data sets (in the common case, there will be exactly one
// item in the list).
//
// Items can be inserted into the container with arbitrary ID, but the caller
// must ensure they are unique. Inserting IDs and relying on automatically
// generated ones is not allowed because they can collide.
//
// This class does not have a virtual destructor, do not inherit from it when
// ownership semantics are set to own because pointers will leak.
template<typename T, IDMapOwnershipSemantics OS = IDMapExternalPointer>
class IDMap : public base::NonThreadSafe {
private:
typedef int32 KeyType;
typedef base::hash_map<KeyType, T*> HashTable;
public:
IDMap() : iteration_depth_(0), next_id_(1), check_on_null_data_(false) {
// A number of consumers of IDMap create it on one thread but always access
// it from a different, but consitent, thread post-construction.
DetachFromThread();
}
~IDMap() {
// Many IDMap's are static, and hence will be destroyed on the main thread.
// However, all the accesses may take place on another thread, such as the
// IO thread. Detaching again to clean this up.
DetachFromThread();
Releaser<OS, 0>::release_all(&data_);
}
// Sets whether Add should CHECK if passed in NULL data. Default is false.
void set_check_on_null_data(bool value) { check_on_null_data_ = value; }
// Adds a view with an automatically generated unique ID. See AddWithID.
KeyType Add(T* data) {
DCHECK(CalledOnValidThread());
CHECK(!check_on_null_data_ || data);
KeyType this_id = next_id_;
DCHECK(data_.find(this_id) == data_.end()) << "Inserting duplicate item";
data_[this_id] = data;
next_id_++;
return this_id;
}
// Adds a new data member with the specified ID. The ID must not be in
// the list. The caller either must generate all unique IDs itself and use
// this function, or allow this object to generate IDs and call Add. These
// two methods may not be mixed, or duplicate IDs may be generated
void AddWithID(T* data, KeyType id) {
DCHECK(CalledOnValidThread());
CHECK(!check_on_null_data_ || data);
DCHECK(data_.find(id) == data_.end()) << "Inserting duplicate item";
data_[id] = data;
}
void Remove(KeyType id) {
DCHECK(CalledOnValidThread());
typename HashTable::iterator i = data_.find(id);
if (i == data_.end()) {
NOTREACHED() << "Attempting to remove an item not in the list";
return;
}
if (iteration_depth_ == 0) {
Releaser<OS, 0>::release(i->second);
data_.erase(i);
} else {
removed_ids_.insert(id);
}
}
void Clear() {
DCHECK(CalledOnValidThread());
if (iteration_depth_ == 0) {
Releaser<OS, 0>::release_all(&data_);
} else {
for (typename HashTable::iterator i = data_.begin();
i != data_.end(); ++i)
removed_ids_.insert(i->first);
}
}
bool IsEmpty() const {
DCHECK(CalledOnValidThread());
return size() == 0u;
}
T* Lookup(KeyType id) const {
DCHECK(CalledOnValidThread());
typename HashTable::const_iterator i = data_.find(id);
if (i == data_.end())
return NULL;
return i->second;
}
size_t size() const {
DCHECK(CalledOnValidThread());
return data_.size() - removed_ids_.size();
}
#if defined(UNIT_TEST)
int iteration_depth() const {
return iteration_depth_;
}
#endif // defined(UNIT_TEST)
// It is safe to remove elements from the map during iteration. All iterators
// will remain valid.
template<class ReturnType>
class Iterator {
public:
Iterator(IDMap<T, OS>* map)
: map_(map),
iter_(map_->data_.begin()) {
Init();
}
Iterator(const Iterator& iter)
: map_(iter.map_),
iter_(iter.iter_) {
Init();
}
const Iterator& operator=(const Iterator& iter) {
map_ = iter.map;
iter_ = iter.iter;
Init();
return *this;
}
~Iterator() {
DCHECK(map_->CalledOnValidThread());
// We're going to decrement iteration depth. Make sure it's greater than
// zero so that it doesn't become negative.
DCHECK_LT(0, map_->iteration_depth_);
if (--map_->iteration_depth_ == 0)
map_->Compact();
}
bool IsAtEnd() const {
DCHECK(map_->CalledOnValidThread());
return iter_ == map_->data_.end();
}
KeyType GetCurrentKey() const {
DCHECK(map_->CalledOnValidThread());
return iter_->first;
}
ReturnType* GetCurrentValue() const {
DCHECK(map_->CalledOnValidThread());
return iter_->second;
}
void Advance() {
DCHECK(map_->CalledOnValidThread());
++iter_;
SkipRemovedEntries();
}
private:
void Init() {
DCHECK(map_->CalledOnValidThread());
++map_->iteration_depth_;
SkipRemovedEntries();
}
void SkipRemovedEntries() {
while (iter_ != map_->data_.end() &&
map_->removed_ids_.find(iter_->first) !=
map_->removed_ids_.end()) {
++iter_;
}
}
IDMap<T, OS>* map_;
typename HashTable::const_iterator iter_;
};
typedef Iterator<T> iterator;
typedef Iterator<const T> const_iterator;
private:
// The dummy parameter is there because C++ standard does not allow
// explicitly specialized templates inside classes
template<IDMapOwnershipSemantics OI, int dummy> struct Releaser {
static inline void release(T* ptr) {}
static inline void release_all(HashTable* table) {}
};
template<int dummy> struct Releaser<IDMapOwnPointer, dummy> {
static inline void release(T* ptr) { delete ptr;}
static inline void release_all(HashTable* table) {
for (typename HashTable::iterator i = table->begin();
i != table->end(); ++i) {
delete i->second;
}
table->clear();
}
};
void Compact() {
DCHECK_EQ(0, iteration_depth_);
for (std::set<KeyType>::const_iterator i = removed_ids_.begin();
i != removed_ids_.end(); ++i) {
Remove(*i);
}
removed_ids_.clear();
}
// Keep track of how many iterators are currently iterating on us to safely
// handle removing items during iteration.
int iteration_depth_;
// Keep set of IDs that should be removed after the outermost iteration has
// finished. This way we manage to not invalidate the iterator when an element
// is removed.
std::set<KeyType> removed_ids_;
// The next ID that we will return from Add()
KeyType next_id_;
HashTable data_;
// See description above setter.
bool check_on_null_data_;
DISALLOW_COPY_AND_ASSIGN(IDMap);
};
#endif // BASE_ID_MAP_H_
|