summaryrefslogtreecommitdiffstats
path: root/base/linked_list.h
blob: 7464997664950f1afa14e63ffd8904c44637196a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_LINKED_LIST_H_
#define BASE_LINKED_LIST_H_

// Simple LinkedList type. (See the Q&A section to understand how this
// differs from std::list).
//
// To use, start by declaring the class which will be contained in the linked
// list, as extending LinkNode (this gives it next/previous pointers).
//
//   class MyNodeType : public LinkNode<MyNodeType> {
//     ...
//   };
//
// Next, to keep track of the list's head/tail, use a LinkedList instance:
//
//   LinkedList<MyNodeType> list;
//
// To add elements to the list, use any of LinkedList::Append,
// LinkNode::InsertBefore, or LinkNode::InsertAfter:
//
//   LinkNode<MyNodeType>* n1 = ...;
//   LinkNode<MyNodeType>* n2 = ...;
//   LinkNode<MyNodeType>* n3 = ...;
//
//   list.Append(n1);
//   list.Append(n3);
//   n3->InsertBefore(n3);
//
// Lastly, to iterate through the linked list forwards:
//
//   for (LinkNode<MyNodeType>* node = list.head();
//        node != list.end();
//        node = node->next()) {
//     MyNodeType* value = node->value();
//     ...
//   }
//
// Or to iterate the linked list backwards:
//
//   for (LinkNode<MyNodeType>* node = list.tail();
//        node != list.end();
//        node = node->previous()) {
//     MyNodeType* value = node->value();
//     ...
//   }
//
// Questions and Answers:
//
// Q. Should I use std::list or base::LinkedList?
//
// A. The main reason to use base::LinkedList over std::list is
//    performance. If you don't care about the performance differences
//    then use an STL container, as it makes for better code readability.
//
//    Comparing the performance of base::LinkedList<T> to std::list<T*>:
//
//    * Erasing an element of type T* from base::LinkedList<T> is
//      an O(1) operation. Whereas for std::list<T*> it is O(n).
//      That is because with std::list<T*> you must obtain an
//      iterator to the T* element before you can call erase(iterator).
//
//    * Insertion operations with base::LinkedList<T> never require
//      heap allocations.
//
// Q. How does base::LinkedList implementation differ from std::list?
//
// A. Doubly-linked lists are made up of nodes that contain "next" and
//    "previous" pointers that reference other nodes in the list.
//
//    With base::LinkedList<T>, the type being inserted already reserves
//    space for the "next" and "previous" pointers (base::LinkNode<T>*).
//    Whereas with std::list<T> the type can be anything, so the implementation
//    needs to glue on the "next" and "previous" pointers using
//    some internal node type.

namespace base {

template <typename T>
class LinkNode {
 public:
  LinkNode() : previous_(0), next_(0) {}
  LinkNode(LinkNode<T>* previous, LinkNode<T>* next)
      : previous_(previous), next_(next) {}

  // Insert |this| into the linked list, before |e|.
  void InsertBefore(LinkNode<T>* e) {
    this->next_ = e;
    this->previous_ = e->previous_;
    e->previous_->next_ = this;
    e->previous_ = this;
  }

  // Insert |this| into the linked list, after |e|.
  void InsertAfter(LinkNode<T>* e) {
    this->next_ = e->next_;
    this->previous_ = e;
    e->next_->previous_ = this;
    e->next_ = this;
  }

  // Remove |this| from the linked list.
  void RemoveFromList() {
    this->previous_->next_ = this->next_;
    this->next_->previous_ = this->previous_;
  }

  LinkNode<T>* previous() const {
    return previous_;
  }

  LinkNode<T>* next() const {
    return next_;
  }

  // Cast from the node-type to the value type.
  const T* value() const {
    return static_cast<const T*>(this);
  }

  T* value() {
    return static_cast<T*>(this);
  }

  void set(LinkNode<T>* prev, LinkNode<T>* next) {
    previous_ = prev; next_ = next;
  }

 private:
  LinkNode<T>* previous_;
  LinkNode<T>* next_;
};

template <typename T>
class LinkedList {
 public:
  // The "root" node is self-referential, and forms the basis of a circular
  // list (root_.next() will point back to the start of the list,
  // and root_->previous() wraps around to the end of the list).
  LinkedList() { root_.set(&root_, &root_); }

  // Appends |e| to the end of the linked list.
  void Append(LinkNode<T>* e) {
    e->InsertBefore(&root_);
  }

  LinkNode<T>* head() const {
    return root_.next();
  }

  LinkNode<T>* tail() const {
    return root_.previous();
  }

  const LinkNode<T>* end() const {
    return &root_;
  }

 private:
  LinkNode<T> root_;
};

}  // namespace base

#endif  // BASE_LINKED_LIST_H_