summaryrefslogtreecommitdiffstats
path: root/base/memory/discardable_memory_allocator_android.cc
blob: 1588317ef646b30a1e1a7f825e5414bb1a645886 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/memory/discardable_memory_allocator_android.h"

#include <sys/mman.h>
#include <unistd.h>

#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include <utility>

#include "base/basictypes.h"
#include "base/containers/hash_tables.h"
#include "base/file_util.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/memory/discardable_memory.h"
#include "base/memory/scoped_vector.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread_checker.h"
#include "third_party/ashmem/ashmem.h"

// The allocator consists of three parts (classes):
// - DiscardableMemoryAllocator: entry point of all allocations (through its
// Allocate() method) that are dispatched to the AshmemRegion instances (which
// it owns).
// - AshmemRegion: manages allocations and destructions inside a single large
// (e.g. 32 MBytes) ashmem region.
// - DiscardableAshmemChunk: class implementing the DiscardableMemory interface
// whose instances are returned to the client. DiscardableAshmemChunk lets the
// client seamlessly operate on a subrange of the ashmem region managed by
// AshmemRegion.

namespace base {
namespace {

// Only tolerate fragmentation in used chunks *caused by the client* (as opposed
// to the allocator when a free chunk is reused). The client can cause such
// fragmentation by e.g. requesting 4097 bytes. This size would be rounded up to
// 8192 by the allocator which would cause 4095 bytes of fragmentation (which is
// currently the maximum allowed). If the client requests 4096 bytes and a free
// chunk of 8192 bytes is available then the free chunk gets splitted into two
// pieces to minimize fragmentation (since 8192 - 4096 = 4096 which is greater
// than 4095).
// TODO(pliard): tune this if splitting chunks too often leads to performance
// issues.
const size_t kMaxChunkFragmentationBytes = 4096 - 1;

const size_t kMinAshmemRegionSize = 32 * 1024 * 1024;

// Returns 0 if the provided size is too high to be aligned.
size_t AlignToNextPage(size_t size) {
  const size_t kPageSize = 4096;
  DCHECK_EQ(static_cast<int>(kPageSize), getpagesize());
  if (size > std::numeric_limits<size_t>::max() - kPageSize + 1)
    return 0;
  const size_t mask = ~(kPageSize - 1);
  return (size + kPageSize - 1) & mask;
}

bool CreateAshmemRegion(const char* name,
                        size_t size,
                        int* out_fd,
                        void** out_address) {
  base::ScopedFD fd(ashmem_create_region(name, size));
  if (!fd.is_valid()) {
    DLOG(ERROR) << "ashmem_create_region() failed";
    return false;
  }

  const int err = ashmem_set_prot_region(fd.get(), PROT_READ | PROT_WRITE);
  if (err < 0) {
    DLOG(ERROR) << "Error " << err << " when setting protection of ashmem";
    return false;
  }

  // There is a problem using MAP_PRIVATE here. As we are constantly calling
  // Lock() and Unlock(), data could get lost if they are not written to the
  // underlying file when Unlock() gets called.
  void* const address = mmap(
      NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0);
  if (address == MAP_FAILED) {
    DPLOG(ERROR) << "Failed to map memory.";
    return false;
  }

  *out_fd = fd.release();
  *out_address = address;
  return true;
}

bool CloseAshmemRegion(int fd, size_t size, void* address) {
  if (munmap(address, size) == -1) {
    DPLOG(ERROR) << "Failed to unmap memory.";
    close(fd);
    return false;
  }
  return close(fd) == 0;
}

DiscardableMemoryLockStatus LockAshmemRegion(int fd,
                                             size_t off,
                                             size_t size,
                                             const void* address) {
  const int result = ashmem_pin_region(fd, off, size);
  DCHECK_EQ(0, mprotect(address, size, PROT_READ | PROT_WRITE));
  return result == ASHMEM_WAS_PURGED ? DISCARDABLE_MEMORY_LOCK_STATUS_PURGED
                                     : DISCARDABLE_MEMORY_LOCK_STATUS_SUCCESS;
}

bool UnlockAshmemRegion(int fd, size_t off, size_t size, const void* address) {
  const int failed = ashmem_unpin_region(fd, off, size);
  if (failed)
    DLOG(ERROR) << "Failed to unpin memory.";
  // This allows us to catch accesses to unlocked memory.
  DCHECK_EQ(0, mprotect(address, size, PROT_NONE));
  return !failed;
}

}  // namespace

namespace internal {

class DiscardableMemoryAllocator::DiscardableAshmemChunk
    : public DiscardableMemory {
 public:
  // Note that |ashmem_region| must outlive |this|.
  DiscardableAshmemChunk(AshmemRegion* ashmem_region,
                         int fd,
                         void* address,
                         size_t offset,
                         size_t size)
      : ashmem_region_(ashmem_region),
        fd_(fd),
        address_(address),
        offset_(offset),
        size_(size),
        locked_(true) {
  }

  // Implemented below AshmemRegion since this requires the full definition of
  // AshmemRegion.
  virtual ~DiscardableAshmemChunk();

  // DiscardableMemory:
  virtual DiscardableMemoryLockStatus Lock() OVERRIDE {
    DCHECK(!locked_);
    locked_ = true;
    return LockAshmemRegion(fd_, offset_, size_, address_);
  }

  virtual void Unlock() OVERRIDE {
    DCHECK(locked_);
    locked_ = false;
    UnlockAshmemRegion(fd_, offset_, size_, address_);
  }

  virtual void* Memory() const OVERRIDE {
    return address_;
  }

 private:
  AshmemRegion* const ashmem_region_;
  const int fd_;
  void* const address_;
  const size_t offset_;
  const size_t size_;
  bool locked_;

  DISALLOW_COPY_AND_ASSIGN(DiscardableAshmemChunk);
};

class DiscardableMemoryAllocator::AshmemRegion {
 public:
  // Note that |allocator| must outlive |this|.
  static scoped_ptr<AshmemRegion> Create(
      size_t size,
      const std::string& name,
      DiscardableMemoryAllocator* allocator) {
    DCHECK_EQ(size, AlignToNextPage(size));
    int fd;
    void* base;
    if (!CreateAshmemRegion(name.c_str(), size, &fd, &base))
      return scoped_ptr<AshmemRegion>();
    return make_scoped_ptr(new AshmemRegion(fd, size, base, allocator));
  }

  ~AshmemRegion() {
    const bool result = CloseAshmemRegion(fd_, size_, base_);
    DCHECK(result);
    DCHECK(!highest_allocated_chunk_);
  }

  // Returns a new instance of DiscardableMemory whose size is greater or equal
  // than |actual_size| (which is expected to be greater or equal than
  // |client_requested_size|).
  // Allocation works as follows:
  // 1) Reuse a previously freed chunk and return it if it succeeded. See
  // ReuseFreeChunk_Locked() below for more information.
  // 2) If no free chunk could be reused and the region is not big enough for
  // the requested size then NULL is returned.
  // 3) If there is enough room in the ashmem region then a new chunk is
  // returned. This new chunk starts at |offset_| which is the end of the
  // previously highest chunk in the region.
  scoped_ptr<DiscardableMemory> Allocate_Locked(size_t client_requested_size,
                                                size_t actual_size) {
    DCHECK_LE(client_requested_size, actual_size);
    allocator_->lock_.AssertAcquired();

    // Check that the |highest_allocated_chunk_| field doesn't contain a stale
    // pointer. It should point to either a free chunk or a used chunk.
    DCHECK(!highest_allocated_chunk_ ||
           address_to_free_chunk_map_.find(highest_allocated_chunk_) !=
               address_to_free_chunk_map_.end() ||
           used_to_previous_chunk_map_.find(highest_allocated_chunk_) !=
               used_to_previous_chunk_map_.end());

    scoped_ptr<DiscardableMemory> memory = ReuseFreeChunk_Locked(
        client_requested_size, actual_size);
    if (memory)
      return memory.Pass();

    if (size_ - offset_ < actual_size) {
      // This region does not have enough space left to hold the requested size.
      return scoped_ptr<DiscardableMemory>();
    }

    void* const address = static_cast<char*>(base_) + offset_;
    memory.reset(
        new DiscardableAshmemChunk(this, fd_, address, offset_, actual_size));

    used_to_previous_chunk_map_.insert(
        std::make_pair(address, highest_allocated_chunk_));
    highest_allocated_chunk_ = address;
    offset_ += actual_size;
    DCHECK_LE(offset_, size_);
    return memory.Pass();
  }

  void OnChunkDeletion(void* chunk, size_t size) {
    AutoLock auto_lock(allocator_->lock_);
    MergeAndAddFreeChunk_Locked(chunk, size);
    // Note that |this| might be deleted beyond this point.
  }

 private:
  struct FreeChunk {
    FreeChunk() : previous_chunk(NULL), start(NULL), size(0) {}

    explicit FreeChunk(size_t size)
        : previous_chunk(NULL),
          start(NULL),
          size(size) {
    }

    FreeChunk(void* previous_chunk, void* start, size_t size)
        : previous_chunk(previous_chunk),
          start(start),
          size(size) {
      DCHECK_LT(previous_chunk, start);
    }

    void* const previous_chunk;
    void* const start;
    const size_t size;

    bool is_null() const { return !start; }

    bool operator<(const FreeChunk& other) const {
      return size < other.size;
    }
  };

  // Note that |allocator| must outlive |this|.
  AshmemRegion(int fd,
               size_t size,
               void* base,
               DiscardableMemoryAllocator* allocator)
      : fd_(fd),
        size_(size),
        base_(base),
        allocator_(allocator),
        highest_allocated_chunk_(NULL),
        offset_(0) {
    DCHECK_GE(fd_, 0);
    DCHECK_GE(size, kMinAshmemRegionSize);
    DCHECK(base);
    DCHECK(allocator);
  }

  // Tries to reuse a previously freed chunk by doing a closest size match.
  scoped_ptr<DiscardableMemory> ReuseFreeChunk_Locked(
      size_t client_requested_size,
      size_t actual_size) {
    allocator_->lock_.AssertAcquired();
    const FreeChunk reused_chunk = RemoveFreeChunkFromIterator_Locked(
        free_chunks_.lower_bound(FreeChunk(actual_size)));
    if (reused_chunk.is_null())
      return scoped_ptr<DiscardableMemory>();

    used_to_previous_chunk_map_.insert(
        std::make_pair(reused_chunk.start, reused_chunk.previous_chunk));
    size_t reused_chunk_size = reused_chunk.size;
    // |client_requested_size| is used below rather than |actual_size| to
    // reflect the amount of bytes that would not be usable by the client (i.e.
    // wasted). Using |actual_size| instead would not allow us to detect
    // fragmentation caused by the client if he did misaligned allocations.
    DCHECK_GE(reused_chunk.size, client_requested_size);
    const size_t fragmentation_bytes =
        reused_chunk.size - client_requested_size;

    if (fragmentation_bytes > kMaxChunkFragmentationBytes) {
      // Split the free chunk being recycled so that its unused tail doesn't get
      // reused (i.e. locked) which would prevent it from being evicted under
      // memory pressure.
      reused_chunk_size = actual_size;
      void* const new_chunk_start =
          static_cast<char*>(reused_chunk.start) + actual_size;
      if (reused_chunk.start == highest_allocated_chunk_) {
        // We also need to update the pointer to the highest allocated chunk in
        // case we are splitting the highest chunk.
        highest_allocated_chunk_ = new_chunk_start;
      }
      DCHECK_GT(reused_chunk.size, actual_size);
      const size_t new_chunk_size = reused_chunk.size - actual_size;
      // Note that merging is not needed here since there can't be contiguous
      // free chunks at this point.
      AddFreeChunk_Locked(
          FreeChunk(reused_chunk.start, new_chunk_start, new_chunk_size));
    }

    const size_t offset =
        static_cast<char*>(reused_chunk.start) - static_cast<char*>(base_);
    LockAshmemRegion(fd_, offset, reused_chunk_size, reused_chunk.start);
    scoped_ptr<DiscardableMemory> memory(
        new DiscardableAshmemChunk(this, fd_, reused_chunk.start, offset,
                                   reused_chunk_size));
    return memory.Pass();
  }

  // Makes the chunk identified with the provided arguments free and possibly
  // merges this chunk with the previous and next contiguous ones.
  // If the provided chunk is the only one used (and going to be freed) in the
  // region then the internal ashmem region is closed so that the underlying
  // physical pages are immediately released.
  // Note that free chunks are unlocked therefore they can be reclaimed by the
  // kernel if needed (under memory pressure) but they are not immediately
  // released unfortunately since madvise(MADV_REMOVE) and
  // fallocate(FALLOC_FL_PUNCH_HOLE) don't seem to work on ashmem. This might
  // change in versions of kernel >=3.5 though. The fact that free chunks are
  // not immediately released is the reason why we are trying to minimize
  // fragmentation in order not to cause "artificial" memory pressure.
  void MergeAndAddFreeChunk_Locked(void* chunk, size_t size) {
    allocator_->lock_.AssertAcquired();
    size_t new_free_chunk_size = size;
    // Merge with the previous chunk.
    void* first_free_chunk = chunk;
    DCHECK(!used_to_previous_chunk_map_.empty());
    const hash_map<void*, void*>::iterator previous_chunk_it =
        used_to_previous_chunk_map_.find(chunk);
    DCHECK(previous_chunk_it != used_to_previous_chunk_map_.end());
    void* previous_chunk = previous_chunk_it->second;
    used_to_previous_chunk_map_.erase(previous_chunk_it);

    if (previous_chunk) {
      const FreeChunk free_chunk = RemoveFreeChunk_Locked(previous_chunk);
      if (!free_chunk.is_null()) {
        new_free_chunk_size += free_chunk.size;
        first_free_chunk = previous_chunk;
        if (chunk == highest_allocated_chunk_)
          highest_allocated_chunk_ = previous_chunk;

        // There should not be more contiguous previous free chunks.
        previous_chunk = free_chunk.previous_chunk;
        DCHECK(!address_to_free_chunk_map_.count(previous_chunk));
      }
    }

    // Merge with the next chunk if free and present.
    void* next_chunk = static_cast<char*>(chunk) + size;
    const FreeChunk next_free_chunk = RemoveFreeChunk_Locked(next_chunk);
    if (!next_free_chunk.is_null()) {
      new_free_chunk_size += next_free_chunk.size;
      if (next_free_chunk.start == highest_allocated_chunk_)
        highest_allocated_chunk_ = first_free_chunk;

      // Same as above.
      DCHECK(!address_to_free_chunk_map_.count(static_cast<char*>(next_chunk) +
                                               next_free_chunk.size));
    }

    const bool whole_ashmem_region_is_free =
        used_to_previous_chunk_map_.empty();
    if (!whole_ashmem_region_is_free) {
      AddFreeChunk_Locked(
          FreeChunk(previous_chunk, first_free_chunk, new_free_chunk_size));
      return;
    }

    // The whole ashmem region is free thus it can be deleted.
    DCHECK_EQ(base_, first_free_chunk);
    DCHECK_EQ(base_, highest_allocated_chunk_);
    DCHECK(free_chunks_.empty());
    DCHECK(address_to_free_chunk_map_.empty());
    DCHECK(used_to_previous_chunk_map_.empty());
    highest_allocated_chunk_ = NULL;
    allocator_->DeleteAshmemRegion_Locked(this);  // Deletes |this|.
  }

  void AddFreeChunk_Locked(const FreeChunk& free_chunk) {
    allocator_->lock_.AssertAcquired();
    const std::multiset<FreeChunk>::iterator it = free_chunks_.insert(
        free_chunk);
    address_to_free_chunk_map_.insert(std::make_pair(free_chunk.start, it));
    // Update the next used contiguous chunk, if any, since its previous chunk
    // may have changed due to free chunks merging/splitting.
    void* const next_used_contiguous_chunk =
        static_cast<char*>(free_chunk.start) + free_chunk.size;
    hash_map<void*, void*>::iterator previous_it =
        used_to_previous_chunk_map_.find(next_used_contiguous_chunk);
    if (previous_it != used_to_previous_chunk_map_.end())
      previous_it->second = free_chunk.start;
  }

  // Finds and removes the free chunk, if any, whose start address is
  // |chunk_start|. Returns a copy of the unlinked free chunk or a free chunk
  // whose content is null if it was not found.
  FreeChunk RemoveFreeChunk_Locked(void* chunk_start) {
    allocator_->lock_.AssertAcquired();
    const hash_map<
        void*, std::multiset<FreeChunk>::iterator>::iterator it =
            address_to_free_chunk_map_.find(chunk_start);
    if (it == address_to_free_chunk_map_.end())
      return FreeChunk();
    return RemoveFreeChunkFromIterator_Locked(it->second);
  }

  // Same as above but takes an iterator in.
  FreeChunk RemoveFreeChunkFromIterator_Locked(
      std::multiset<FreeChunk>::iterator free_chunk_it) {
    allocator_->lock_.AssertAcquired();
    if (free_chunk_it == free_chunks_.end())
      return FreeChunk();
    DCHECK(free_chunk_it != free_chunks_.end());
    const FreeChunk free_chunk(*free_chunk_it);
    address_to_free_chunk_map_.erase(free_chunk_it->start);
    free_chunks_.erase(free_chunk_it);
    return free_chunk;
  }

  const int fd_;
  const size_t size_;
  void* const base_;
  DiscardableMemoryAllocator* const allocator_;
  // Points to the chunk with the highest address in the region. This pointer
  // needs to be carefully updated when chunks are merged/split.
  void* highest_allocated_chunk_;
  // Points to the end of |highest_allocated_chunk_|.
  size_t offset_;
  // Allows free chunks recycling (lookup, insertion and removal) in O(log N).
  // Note that FreeChunk values are indexed by their size and also note that
  // multiple free chunks can have the same size (which is why multiset<> is
  // used instead of e.g. set<>).
  std::multiset<FreeChunk> free_chunks_;
  // Used while merging free contiguous chunks to erase free chunks (from their
  // start address) in constant time. Note that multiset<>::{insert,erase}()
  // don't invalidate iterators (except the one for the element being removed
  // obviously).
  hash_map<
      void*, std::multiset<FreeChunk>::iterator> address_to_free_chunk_map_;
  // Maps the address of *used* chunks to the address of their previous
  // contiguous chunk.
  hash_map<void*, void*> used_to_previous_chunk_map_;

  DISALLOW_COPY_AND_ASSIGN(AshmemRegion);
};

DiscardableMemoryAllocator::DiscardableAshmemChunk::~DiscardableAshmemChunk() {
  if (locked_)
    UnlockAshmemRegion(fd_, offset_, size_, address_);
  ashmem_region_->OnChunkDeletion(address_, size_);
}

DiscardableMemoryAllocator::DiscardableMemoryAllocator(
    const std::string& name,
    size_t ashmem_region_size)
    : name_(name),
      ashmem_region_size_(
          std::max(kMinAshmemRegionSize, AlignToNextPage(ashmem_region_size))),
      last_ashmem_region_size_(0) {
  DCHECK_GE(ashmem_region_size_, kMinAshmemRegionSize);
}

DiscardableMemoryAllocator::~DiscardableMemoryAllocator() {
  DCHECK(thread_checker_.CalledOnValidThread());
  DCHECK(ashmem_regions_.empty());
}

scoped_ptr<DiscardableMemory> DiscardableMemoryAllocator::Allocate(
    size_t size) {
  const size_t aligned_size = AlignToNextPage(size);
  if (!aligned_size)
    return scoped_ptr<DiscardableMemory>();
  // TODO(pliard): make this function less naive by e.g. moving the free chunks
  // multiset to the allocator itself in order to decrease even more
  // fragmentation/speedup allocation. Note that there should not be more than a
  // couple (=5) of AshmemRegion instances in practice though.
  AutoLock auto_lock(lock_);
  DCHECK_LE(ashmem_regions_.size(), 5U);
  for (ScopedVector<AshmemRegion>::iterator it = ashmem_regions_.begin();
       it != ashmem_regions_.end(); ++it) {
    scoped_ptr<DiscardableMemory> memory(
        (*it)->Allocate_Locked(size, aligned_size));
    if (memory)
      return memory.Pass();
  }
  // The creation of the (large) ashmem region might fail if the address space
  // is too fragmented. In case creation fails the allocator retries by
  // repetitively dividing the size by 2.
  const size_t min_region_size = std::max(kMinAshmemRegionSize, aligned_size);
  for (size_t region_size = std::max(ashmem_region_size_, aligned_size);
       region_size >= min_region_size;
       region_size = AlignToNextPage(region_size / 2)) {
    scoped_ptr<AshmemRegion> new_region(
        AshmemRegion::Create(region_size, name_.c_str(), this));
    if (!new_region)
      continue;
    last_ashmem_region_size_ = region_size;
    ashmem_regions_.push_back(new_region.release());
    return ashmem_regions_.back()->Allocate_Locked(size, aligned_size);
  }
  // TODO(pliard): consider adding an histogram to see how often this happens.
  return scoped_ptr<DiscardableMemory>();
}

size_t DiscardableMemoryAllocator::last_ashmem_region_size() const {
  AutoLock auto_lock(lock_);
  return last_ashmem_region_size_;
}

void DiscardableMemoryAllocator::DeleteAshmemRegion_Locked(
    AshmemRegion* region) {
  lock_.AssertAcquired();
  // Note that there should not be more than a couple of ashmem region instances
  // in |ashmem_regions_|.
  DCHECK_LE(ashmem_regions_.size(), 5U);
  const ScopedVector<AshmemRegion>::iterator it = std::find(
      ashmem_regions_.begin(), ashmem_regions_.end(), region);
  DCHECK_NE(ashmem_regions_.end(), it);
  std::swap(*it, ashmem_regions_.back());
  ashmem_regions_.pop_back();
}

}  // namespace internal
}  // namespace base