summaryrefslogtreecommitdiffstats
path: root/base/memory/discardable_memory_provider.cc
blob: f7511a1a07e350af3af3a6a0462bd326d3721afe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/memory/discardable_memory_provider.h"

#include "base/bind.h"
#include "base/containers/hash_tables.h"
#include "base/containers/mru_cache.h"
#include "base/debug/trace_event.h"
#include "base/lazy_instance.h"
#include "base/memory/discardable_memory.h"
#include "base/synchronization/lock.h"
#include "base/sys_info.h"

namespace base {
namespace internal {

namespace {

static base::LazyInstance<DiscardableMemoryProvider>::Leaky g_provider =
    LAZY_INSTANCE_INITIALIZER;

// If this is given a valid value via SetInstanceForTest, this pointer will be
// returned by GetInstance rather than |g_provider|.
static DiscardableMemoryProvider* g_provider_for_test = NULL;

// This is admittedly pretty magical. It's approximately enough memory for two
// 2560x1600 images.
static const size_t kDefaultDiscardableMemoryLimit = 32 * 1024 * 1024;
static const size_t kDefaultBytesToReclaimUnderModeratePressure =
    kDefaultDiscardableMemoryLimit / 2;

}  // namespace

DiscardableMemoryProvider::DiscardableMemoryProvider()
    : allocations_(AllocationMap::NO_AUTO_EVICT),
      bytes_allocated_(0),
      discardable_memory_limit_(kDefaultDiscardableMemoryLimit),
      bytes_to_reclaim_under_moderate_pressure_(
          kDefaultBytesToReclaimUnderModeratePressure),
      memory_pressure_listener_(
          base::Bind(&DiscardableMemoryProvider::NotifyMemoryPressure)) {
}

DiscardableMemoryProvider::~DiscardableMemoryProvider() {
  DCHECK(allocations_.empty());
  DCHECK_EQ(0u, bytes_allocated_);
}

// static
DiscardableMemoryProvider* DiscardableMemoryProvider::GetInstance() {
  if (g_provider_for_test)
    return g_provider_for_test;
  return g_provider.Pointer();
}

// static
void DiscardableMemoryProvider::SetInstanceForTest(
    DiscardableMemoryProvider* provider) {
  g_provider_for_test = provider;
}

// static
void DiscardableMemoryProvider::NotifyMemoryPressure(
    MemoryPressureListener::MemoryPressureLevel pressure_level) {
  switch (pressure_level) {
    case MemoryPressureListener::MEMORY_PRESSURE_MODERATE:
      DiscardableMemoryProvider::GetInstance()->Purge();
      return;
    case MemoryPressureListener::MEMORY_PRESSURE_CRITICAL:
      DiscardableMemoryProvider::GetInstance()->PurgeAll();
      return;
  }

  NOTREACHED();
}

void DiscardableMemoryProvider::SetDiscardableMemoryLimit(size_t bytes) {
  AutoLock lock(lock_);
  discardable_memory_limit_ = bytes;
  EnforcePolicyWithLockAcquired();
}

void DiscardableMemoryProvider::SetBytesToReclaimUnderModeratePressure(
    size_t bytes) {
  AutoLock lock(lock_);
  bytes_to_reclaim_under_moderate_pressure_ = bytes;
}

void DiscardableMemoryProvider::Register(
    const DiscardableMemory* discardable, size_t bytes) {
  AutoLock lock(lock_);
  DCHECK(allocations_.Peek(discardable) == allocations_.end());
  allocations_.Put(discardable, Allocation(bytes));
}

void DiscardableMemoryProvider::Unregister(
    const DiscardableMemory* discardable) {
  AutoLock lock(lock_);
  AllocationMap::iterator it = allocations_.Peek(discardable);
  if (it == allocations_.end())
    return;

  if (it->second.memory) {
    size_t bytes = it->second.bytes;
    DCHECK_LE(bytes, bytes_allocated_);
    bytes_allocated_ -= bytes;
    free(it->second.memory);
  }
  allocations_.Erase(it);
}

scoped_ptr<uint8, FreeDeleter> DiscardableMemoryProvider::Acquire(
    const DiscardableMemory* discardable,
    bool* purged) {
  AutoLock lock(lock_);
  // NB: |allocations_| is an MRU cache, and use of |Get| here updates that
  // cache.
  AllocationMap::iterator it = allocations_.Get(discardable);
  CHECK(it != allocations_.end());

  if (it->second.memory) {
    scoped_ptr<uint8, FreeDeleter> memory(it->second.memory);
    it->second.memory = NULL;
    *purged = false;
    return memory.Pass();
  }

  size_t bytes = it->second.bytes;
  if (!bytes)
    return scoped_ptr<uint8, FreeDeleter>();

  if (discardable_memory_limit_) {
    size_t limit = 0;
    if (bytes < discardable_memory_limit_)
      limit = discardable_memory_limit_ - bytes;

    PurgeLRUWithLockAcquiredUntilUsageIsWithin(limit);
  }

  // Check for overflow.
  if (std::numeric_limits<size_t>::max() - bytes < bytes_allocated_)
    return scoped_ptr<uint8, FreeDeleter>();

  scoped_ptr<uint8, FreeDeleter> memory(static_cast<uint8*>(malloc(bytes)));
  if (!memory)
    return scoped_ptr<uint8, FreeDeleter>();

  bytes_allocated_ += bytes;
  *purged = true;
  return memory.Pass();
}

void DiscardableMemoryProvider::Release(
    const DiscardableMemory* discardable,
    scoped_ptr<uint8, FreeDeleter> memory) {
  AutoLock lock(lock_);
  // NB: |allocations_| is an MRU cache, and use of |Get| here updates that
  // cache.
  AllocationMap::iterator it = allocations_.Get(discardable);
  CHECK(it != allocations_.end());

  DCHECK(!it->second.memory);
  it->second.memory = memory.release();

  EnforcePolicyWithLockAcquired();
}

void DiscardableMemoryProvider::PurgeAll() {
  AutoLock lock(lock_);
  PurgeLRUWithLockAcquiredUntilUsageIsWithin(0);
}

bool DiscardableMemoryProvider::IsRegisteredForTest(
    const DiscardableMemory* discardable) const {
  AutoLock lock(lock_);
  AllocationMap::const_iterator it = allocations_.Peek(discardable);
  return it != allocations_.end();
}

bool DiscardableMemoryProvider::CanBePurgedForTest(
    const DiscardableMemory* discardable) const {
  AutoLock lock(lock_);
  AllocationMap::const_iterator it = allocations_.Peek(discardable);
  return it != allocations_.end() && it->second.memory;
}

size_t DiscardableMemoryProvider::GetBytesAllocatedForTest() const {
  AutoLock lock(lock_);
  return bytes_allocated_;
}

void DiscardableMemoryProvider::Purge() {
  AutoLock lock(lock_);

  if (bytes_to_reclaim_under_moderate_pressure_ == 0)
    return;

  size_t limit = 0;
  if (bytes_to_reclaim_under_moderate_pressure_ < bytes_allocated_)
    limit = bytes_allocated_ - bytes_to_reclaim_under_moderate_pressure_;

  PurgeLRUWithLockAcquiredUntilUsageIsWithin(limit);
}

void DiscardableMemoryProvider::PurgeLRUWithLockAcquiredUntilUsageIsWithin(
    size_t limit) {
  TRACE_EVENT1(
      "base",
      "DiscardableMemoryProvider::PurgeLRUWithLockAcquiredUntilUsageIsWithin",
      "limit", limit);

  lock_.AssertAcquired();

  for (AllocationMap::reverse_iterator it = allocations_.rbegin();
       it != allocations_.rend();
       ++it) {
    if (bytes_allocated_ <= limit)
      break;
    if (!it->second.memory)
      continue;

    size_t bytes = it->second.bytes;
    DCHECK_LE(bytes, bytes_allocated_);
    bytes_allocated_ -= bytes;
    free(it->second.memory);
    it->second.memory = NULL;
  }
}

void DiscardableMemoryProvider::EnforcePolicyWithLockAcquired() {
  PurgeLRUWithLockAcquiredUntilUsageIsWithin(discardable_memory_limit_);
}

}  // namespace internal
}  // namespace base