summaryrefslogtreecommitdiffstats
path: root/base/message_loop_unittest.cc
blob: e79c5768034654853c7e563182bc1f65a291e200 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/logging.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
#include "base/ref_counted.h"
#include "base/thread.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_WIN)
#include "base/message_pump_win.h"
#include "base/scoped_handle.h"
#endif

using base::Thread;

// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.

namespace {

class MessageLoopTest : public testing::Test {};

class Foo : public base::RefCounted<Foo> {
 public:
  Foo() : test_count_(0) {
  }

  void Test0() {
    ++test_count_;
  }

  void Test1ConstRef(const std::string& a) {
    ++test_count_;
    result_.append(a);
  }

  void Test1Ptr(std::string* a) {
    ++test_count_;
    result_.append(*a);
  }

  void Test1Int(int a) {
    test_count_ += a;
  }

  void Test2Ptr(std::string* a, std::string* b) {
    ++test_count_;
    result_.append(*a);
    result_.append(*b);
  }

  void Test2Mixed(const std::string& a, std::string* b) {
    ++test_count_;
    result_.append(a);
    result_.append(*b);
  }

  int test_count() const { return test_count_; }
  const std::string& result() const { return result_; }

 private:
  int test_count_;
  std::string result_;
};

class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
 public:
  void QuitNow() {
    MessageLoop::current()->Quit();
  }
};

void RunTest_PostTask(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Add tests to message loop
  scoped_refptr<Foo> foo = new Foo();
  std::string a("a"), b("b"), c("c"), d("d");
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test0));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    foo.get(), &Foo::Test1ConstRef, a));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Ptr, &b));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Int, 100));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Ptr, &a, &c));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    foo.get(), &Foo::Test2Mixed, a, &d));

  // After all tests, post a message that will shut down the message loop
  scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      quit.get(), &QuitMsgLoop::QuitNow));

  // Now kick things off
  MessageLoop::current()->Run();

  EXPECT_EQ(foo->test_count(), 105);
  EXPECT_EQ(foo->result(), "abacad");
}

void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Add tests to message loop
  scoped_refptr<Foo> foo = new Foo();
  std::string a("a"), b("b"), c("c"), d("d");
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test0));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1ConstRef, a));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Ptr, &b));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Int, 100));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Ptr, &a, &c));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Mixed, a, &d));

  // After all tests, post a message that will shut down the message loop
  scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      quit.get(), &QuitMsgLoop::QuitNow));

  // Now kick things off with the SEH block active.
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  EXPECT_EQ(foo->test_count(), 105);
  EXPECT_EQ(foo->result(), "abacad");
}

// This class runs slowly to simulate a large amount of work being done.
class SlowTask : public Task {
 public:
  SlowTask(int pause_ms, int* quit_counter)
      : pause_ms_(pause_ms), quit_counter_(quit_counter) {
  }
  virtual void Run() {
    PlatformThread::Sleep(pause_ms_);
    if (--(*quit_counter_) == 0)
      MessageLoop::current()->Quit();
  }
 private:
  int pause_ms_;
  int* quit_counter_;
};

// This class records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
class RecordRunTimeTask : public SlowTask {
 public:
  RecordRunTimeTask(Time* run_time, int* quit_counter)
      : SlowTask(10, quit_counter), run_time_(run_time) {
  }
  virtual void Run() {
    *run_time_ = Time::Now();
    // Cause our Run function to take some time to execute.  As a result we can
    // count on subsequent RecordRunTimeTask objects running at a future time,
    // without worry about the resolution of our system clock being an issue.
    SlowTask::Run();
  }
 private:
  Time* run_time_;
};

void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that PostDelayedTask results in a delayed task.

  const int kDelayMS = 100;

  int num_tasks = 1;
  Time run_time;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);

  Time time_before_run = Time::Now();
  loop.Run();
  Time time_after_run = Time::Now();

  EXPECT_EQ(0, num_tasks);
  EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
}

void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that two tasks with different delays run in the right order.

  int num_tasks = 2;
  Time run_time1, run_time2;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
  // If we get a large pause in execution (due to a context switch) here, this
  // test could fail.
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 < run_time1);
}

void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that two tasks with the same delay run in the order in which they
  // were posted.
  //
  // NOTE: This is actually an approximate test since the API only takes a
  // "delay" parameter, so we are not exactly simulating two tasks that get
  // posted at the exact same time.  It would be nice if the API allowed us to
  // specify the desired run time.

  const int kDelayMS = 100;

  int num_tasks = 2;
  Time run_time1, run_time2;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time1 < run_time2);
}

void RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that a delayed task still runs after a normal tasks even if the
  // normal tasks take a long time to run.

  const int kPauseMS = 50;

  int num_tasks = 2;
  Time run_time;

  loop.PostTask(
      FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);

  Time time_before_run = Time::Now();
  loop.Run();
  Time time_after_run = Time::Now();

  EXPECT_EQ(0, num_tasks);

  EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
}

void RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that a delayed task still runs after a pile of normal tasks.  The key
  // difference between this test and the previous one is that here we return
  // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
  // to maybe run the delayed task.  It should know not to do so until the
  // delayed task's delay has passed.

  int num_tasks = 11;
  Time run_time1, run_time2;

  // Clutter the ML with tasks.
  for (int i = 1; i < num_tasks; ++i)
    loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 > run_time1);
}

class RecordDeletionTask : public Task {
 public:
  RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
      : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
  }
  ~RecordDeletionTask() {
    *was_deleted_ = true;
    if (post_on_delete_)
      MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
  }
  virtual void Run() {}
 private:
  Task* post_on_delete_;
  bool* was_deleted_;
};

void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  {
    MessageLoop loop(message_loop_type);
    loop.PostTask(
        FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
    loop.PostDelayedTask(
        FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
}

void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  bool c_was_deleted = false;
  {
    MessageLoop loop(message_loop_type);
    RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
    RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
    RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
    loop.PostTask(FROM_HERE, c);
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
  EXPECT_TRUE(c_was_deleted);
}

class NestingTest : public Task {
 public:
  explicit NestingTest(int* depth) : depth_(depth) {
  }
  void Run() {
    if (*depth_ > 0) {
      *depth_ -= 1;
      MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));

      MessageLoop::current()->SetNestableTasksAllowed(true);
      MessageLoop::current()->Run();
    }
    MessageLoop::current()->Quit();
  }
 private:
  int* depth_;
};

#if defined(OS_WIN)

LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
  ADD_FAILURE() << "bad exception handler";
  ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
  return EXCEPTION_EXECUTE_HANDLER;
}

// This task throws an SEH exception: initially write to an invalid address.
// If the right SEH filter is installed, it will fix the error.
class CrasherTask : public Task {
 public:
  // Ctor. If trash_SEH_handler is true, the task will override the unhandled
  // exception handler with one sure to crash this test.
  explicit CrasherTask(bool trash_SEH_handler)
      : trash_SEH_handler_(trash_SEH_handler) {
  }
  void Run() {
    PlatformThread::Sleep(1);
    if (trash_SEH_handler_)
      ::SetUnhandledExceptionFilter(&BadExceptionHandler);
    // Generate a SEH fault. We do it in asm to make sure we know how to undo
    // the damage.

#if defined(_M_IX86)

    __asm {
      mov eax, dword ptr [CrasherTask::bad_array_]
      mov byte ptr [eax], 66
    }

#elif defined(_M_X64)

    bad_array_[0] = 66;

#else
#error "needs architecture support"
#endif

    MessageLoop::current()->Quit();
  }
  // Points the bad array to a valid memory location.
  static void FixError() {
    bad_array_ = &valid_store_;
  }

 private:
  bool trash_SEH_handler_;
  static volatile char* bad_array_;
  static char valid_store_;
};

volatile char* CrasherTask::bad_array_ = 0;
char CrasherTask::valid_store_ = 0;

// This SEH filter fixes the problem and retries execution. Fixing requires
// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
// so we move the instruction pointer 5 bytes back.
LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
  if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
    return EXCEPTION_EXECUTE_HANDLER;

  CrasherTask::FixError();

#if defined(_M_IX86)

  ex_info->ContextRecord->Eip -= 5;

#elif defined(_M_X64)

  ex_info->ContextRecord->Rip -= 5;

#endif

  return EXCEPTION_CONTINUE_EXECUTION;
}

void RunTest_Crasher(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  if (::IsDebuggerPresent())
    return;

  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);

  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  ::SetUnhandledExceptionFilter(old_SEH_filter);
}

void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);
  
  if (::IsDebuggerPresent())
    return;

  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);

  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  ::SetUnhandledExceptionFilter(old_SEH_filter);
}

#endif  // defined(OS_WIN)

void RunTest_Nesting(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  int depth = 100;
  MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
  MessageLoop::current()->Run();
  EXPECT_EQ(depth, 0);
}

const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";

enum TaskType {
  MESSAGEBOX,
  ENDDIALOG,
  RECURSIVE,
  TIMEDMESSAGELOOP,
  QUITMESSAGELOOP,
  ORDERERD,
  PUMPS,
};

// Saves the order in which the tasks executed.
struct TaskItem {
  TaskItem(TaskType t, int c, bool s)
      : type(t),
        cookie(c),
        start(s) {
  }

  TaskType type;
  int cookie;
  bool start;

  bool operator == (const TaskItem& other) const {
    return type == other.type && cookie == other.cookie && start == other.start;
  }
};

typedef std::vector<TaskItem> TaskList;

std::ostream& operator <<(std::ostream& os, TaskType type) {
  switch (type) {
  case MESSAGEBOX:        os << "MESSAGEBOX"; break;
  case ENDDIALOG:         os << "ENDDIALOG"; break;
  case RECURSIVE:         os << "RECURSIVE"; break;
  case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
  case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
  case ORDERERD:          os << "ORDERERD"; break;
  case PUMPS:             os << "PUMPS"; break;
  default:
    NOTREACHED();
    os << "Unknown TaskType";
    break;
  }
  return os;
}

std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
  if (item.start)
    return os << item.type << " " << item.cookie << " starts";
  else
    return os << item.type << " " << item.cookie << " ends";
}

// Saves the order the tasks ran.
class OrderedTasks : public Task {
 public:
  OrderedTasks(TaskList* order, int cookie)
      : order_(order),
        type_(ORDERERD),
        cookie_(cookie) {
  }
  OrderedTasks(TaskList* order, TaskType type, int cookie)
      : order_(order),
        type_(type),
        cookie_(cookie) {
  }

  void RunStart() {
    TaskItem item(type_, cookie_, true);
    DLOG(INFO) << item;
    order_->push_back(item);
  }
  void RunEnd() {
    TaskItem item(type_, cookie_, false);
    DLOG(INFO) << item;
    order_->push_back(item);
  }

  virtual void Run() {
    RunStart();
    RunEnd();
  }

 protected:
  TaskList* order() const {
    return order_;
  }

  int cookie() const {
    return cookie_;
  }

 private:
  TaskList* order_;
  TaskType type_;
  int cookie_;
};

#if defined(OS_WIN)

// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
class MessageBoxTask : public OrderedTasks {
 public:
  MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
      : OrderedTasks(order, MESSAGEBOX, cookie),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    RunStart();
    if (is_reentrant_)
      MessageLoop::current()->SetNestableTasksAllowed(true);
    MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    RunEnd();
  }

 private:
  bool is_reentrant_;
};

// Will end the MessageBox.
class EndDialogTask : public OrderedTasks {
 public:
  EndDialogTask(TaskList* order, int cookie)
      : OrderedTasks(order, ENDDIALOG, cookie) {
  }

  virtual void Run() {
    RunStart();
    HWND window = GetActiveWindow();
    if (window != NULL) {
      EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
      // Cheap way to signal that the window wasn't found if RunEnd() isn't
      // called.
      RunEnd();
    }
  }
};

#endif  // defined(OS_WIN)

class RecursiveTask : public OrderedTasks {
 public:
  RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
      : OrderedTasks(order, RECURSIVE, cookie),
        depth_(depth),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    RunStart();
    if (depth_ > 0) {
      if (is_reentrant_)
        MessageLoop::current()->SetNestableTasksAllowed(true);
      MessageLoop::current()->PostTask(FROM_HERE,
          new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
    }
    RunEnd();
  }

 private:
  int depth_;
  bool is_reentrant_;
};

class QuitTask : public OrderedTasks {
 public:
  QuitTask(TaskList* order, int cookie)
      : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
  }

  virtual void Run() {
    RunStart();
    MessageLoop::current()->Quit();
    RunEnd();
  }
};

#if defined(OS_WIN)

class Recursive2Tasks : public Task {
 public:
  Recursive2Tasks(MessageLoop* target,
                  HANDLE event,
                  bool expect_window,
                  TaskList* order,
                  bool is_reentrant)
      : target_(target),
        event_(event),
        expect_window_(expect_window),
        order_(order),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    target_->PostTask(FROM_HERE,
                      new RecursiveTask(2, order_, 1, is_reentrant_));
    target_->PostTask(FROM_HERE,
                      new MessageBoxTask(order_, 2, is_reentrant_));
    target_->PostTask(FROM_HERE,
                      new RecursiveTask(2, order_, 3, is_reentrant_));
    // The trick here is that for recursive task processing, this task will be
    // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    // without a chance.
    // For non-recursive task processing, this will be executed _after_ the
    // MessageBox will have been dismissed by the code below, where
    // expect_window_ is true.
    target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
    target_->PostTask(FROM_HERE, new QuitTask(order_, 5));

    // Enforce that every tasks are sent before starting to run the main thread
    // message loop.
    ASSERT_TRUE(SetEvent(event_));

    // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    // you will never realize one MessageBox was shown.
    for (; expect_window_;) {
      HWND window = FindWindow(L"#32770", kMessageBoxTitle);
      if (window) {
        // Dismiss it.
        for (;;) {
          HWND button = FindWindowEx(window, NULL, L"Button", NULL);
          if (button != NULL) {
            EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONDOWN, 0, 0));
            EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONUP, 0, 0));
            break;
          }
        }
        break;
      }
    }
  }

 private:
  MessageLoop* target_;
  HANDLE event_;
  TaskList* order_;
  bool expect_window_;
  bool is_reentrant_;
};

#endif  // defined(OS_WIN)

void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
  TaskList order;
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 1, false));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 2, false));
  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(14U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}

void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);
  
  TaskList order;
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 1, true));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 2, true));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new QuitTask(&order, 3));

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(14U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}

#if defined(OS_WIN)
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.

// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  Thread worker("RecursiveDenial2_worker");
  Thread::Options options;
  options.message_loop_type = message_loop_type;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.message_loop()->PostTask(FROM_HERE,
                                  new Recursive2Tasks(MessageLoop::current(),
                                                      event,
                                                      true,
                                                      &order,
                                                      false));
  // Let the other thread execute.
  WaitForSingleObject(event, INFINITE);
  MessageLoop::current()->Run();

  ASSERT_EQ(order.size(), 17);
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
  // When EndDialogTask is processed, the window is already dismissed, hence no
  // "end" entry.
  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
}

// A side effect of this test is the generation a beep. Sorry.  This test also
// needs to process windows messages on the current thread.
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  Thread worker("RecursiveSupport2_worker");
  Thread::Options options;
  options.message_loop_type = message_loop_type;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.message_loop()->PostTask(FROM_HERE,
                                  new Recursive2Tasks(MessageLoop::current(),
                                                      event,
                                                      false,
                                                      &order,
                                                      true));
  // Let the other thread execute.
  WaitForSingleObject(event, INFINITE);
  MessageLoop::current()->Run();

  ASSERT_EQ(order.size(), 18);
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
  // Note that this executes in the MessageBox modal loop.
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
  EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
  /* The order can subtly change here. The reason is that when RecursiveTask(1)
     is called in the main thread, if it is faster than getting to the
     PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
     change. We don't care anyway that the order isn't correct.
  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  */
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
}

#endif  // defined(OS_WIN)

class TaskThatPumps : public OrderedTasks {
 public:
  TaskThatPumps(TaskList* order, int cookie)
      : OrderedTasks(order, PUMPS, cookie) {
  }

  virtual void Run() {
    RunStart();
    bool old_state = MessageLoop::current()->NestableTasksAllowed();
    MessageLoop::current()->SetNestableTasksAllowed(true);
    MessageLoop::current()->RunAllPending();
    MessageLoop::current()->SetNestableTasksAllowed(old_state);
    RunEnd();
  }
};

// Tests that non nestable tasks run in FIFO if there are no nested loops.
void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  TaskList order;

  Task* task = new OrderedTasks(&order, 1);
  MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(6U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
}

// Tests that non nestable tasks don't run when there's code in the call stack.
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  TaskList order;

  MessageLoop::current()->PostTask(FROM_HERE,
                                   new TaskThatPumps(&order, 1));
  Task* task = new OrderedTasks(&order, 2);
  MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 4));
  Task* non_nestable_quit = new QuitTask(&order, 5);
  MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(10U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
  EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 4, true));
  EXPECT_EQ(order[ 4], TaskItem(ORDERERD, 4, false));
  EXPECT_EQ(order[ 5], TaskItem(PUMPS, 1, false));
  EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 2, true));
  EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 2, false));
  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
}

#if defined(OS_WIN)

class AutoresetWatcher : public MessageLoopForIO::Watcher {
 public:
  AutoresetWatcher(HANDLE signal) : signal_(signal) {
  }
  virtual void OnObjectSignaled(HANDLE object);
 private:
  HANDLE signal_;
};

void AutoresetWatcher::OnObjectSignaled(HANDLE object) {
  MessageLoopForIO::current()->WatchObject(object, NULL);
  ASSERT_TRUE(SetEvent(signal_));
}

class AutoresetTask : public Task {
 public:
  AutoresetTask(HANDLE object, MessageLoopForIO::Watcher* watcher)
    : object_(object), watcher_(watcher) {}
  virtual void Run() {
    MessageLoopForIO::current()->WatchObject(object_, watcher_);
  }

 private:
  HANDLE object_;
  MessageLoopForIO::Watcher* watcher_;
};

void RunTest_AutoresetEvents(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  SECURITY_ATTRIBUTES attributes;
  attributes.nLength = sizeof(attributes);
  attributes.bInheritHandle = false;
  attributes.lpSecurityDescriptor = NULL;

  // Init an autoreset and a manual reset events.
  HANDLE autoreset = CreateEvent(&attributes, FALSE, FALSE, NULL);
  HANDLE callback_called = CreateEvent(&attributes, TRUE, FALSE, NULL);
  ASSERT_TRUE(NULL != autoreset);
  ASSERT_TRUE(NULL != callback_called);

  Thread thread("Autoreset test");
  Thread::Options options;
  options.message_loop_type = message_loop_type;
  ASSERT_TRUE(thread.StartWithOptions(options));

  MessageLoop* thread_loop = thread.message_loop();
  ASSERT_TRUE(NULL != thread_loop);

  AutoresetWatcher watcher(callback_called);
  AutoresetTask* task = new AutoresetTask(autoreset, &watcher);
  thread_loop->PostTask(FROM_HERE, task);
  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.

  ASSERT_TRUE(SetEvent(autoreset));

  DWORD result = WaitForSingleObject(callback_called, 1000);
  EXPECT_EQ(WAIT_OBJECT_0, result);

  thread.Stop();
}

class DispatcherImpl : public MessageLoopForUI::Dispatcher {
 public:
  DispatcherImpl() : dispatch_count_(0) {}

  virtual bool Dispatch(const MSG& msg) {
    ::TranslateMessage(&msg);
    ::DispatchMessage(&msg);
    return (++dispatch_count_ != 2);
  }

  int dispatch_count_;
};

void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  class MyTask : public Task {
  public:
    virtual void Run() {
      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
    }
  };
  Task* task = new MyTask();
  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
  DispatcherImpl dispatcher;
  MessageLoopForUI::current()->Run(&dispatcher);
  ASSERT_EQ(2, dispatcher.dispatch_count_);
}

#endif  // defined(OS_WIN)

}  // namespace

//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop.  That way we are sure
// that message loops work properly in all configurations.  Of course, in some
// cases, a unit test may only be for a particular type of loop.

TEST(MessageLoopTest, PostTask) {
  RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
  RunTest_PostTask(MessageLoop::TYPE_UI);
  RunTest_PostTask(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostTask_SEH) {
  RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
  RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
  RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_Basic) {
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, EnsureTaskDeletion) {
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, EnsureTaskDeletion_Chain) {
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
TEST(MessageLoopTest, Crasher) {
  RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
  RunTest_Crasher(MessageLoop::TYPE_UI);
  RunTest_Crasher(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, CrasherNasty) {
  RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
  RunTest_CrasherNasty(MessageLoop::TYPE_UI);
  RunTest_CrasherNasty(MessageLoop::TYPE_IO);
}
#endif  // defined(OS_WIN)

TEST(MessageLoopTest, Nesting) {
  RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
  RunTest_Nesting(MessageLoop::TYPE_UI);
  RunTest_Nesting(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveDenial1) {
  RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
  RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveSupport1) {
  RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
  RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
TEST(MessageLoopTest, RecursiveDenial2) {
  RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
  RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveSupport2) {
  // This test requires a UI loop
  RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
}
#endif  // defined(OS_WIN)

TEST(MessageLoopTest, NonNestableWithNoNesting) {
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, NonNestableInNestedLoop) {
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
TEST(MessageLoopTest, AutoresetEvents) {
  // This test requires an IO loop
  RunTest_AutoresetEvents(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, Dispatcher) {
  // This test requires a UI loop
  RunTest_Dispatcher(MessageLoop::TYPE_UI);
}
#endif  // defined(OS_WIN)