summaryrefslogtreecommitdiffstats
path: root/base/message_loop_unittest.cc
blob: e926c5782fd7e0fd757355cd978e3de7bbbb7581 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <vector>

#include "base/eintr_wrapper.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/ref_counted.h"
#include "base/task.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_WIN)
#include "base/message_pump_win.h"
#include "base/scoped_handle.h"
#endif
#if defined(OS_POSIX)
#include "base/message_pump_libevent.h"
#endif

using base::PlatformThread;
using base::Thread;
using base::Time;
using base::TimeDelta;

// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.

namespace {

class MessageLoopTest : public testing::Test {};

class Foo : public base::RefCounted<Foo> {
 public:
  Foo() : test_count_(0) {
  }

  void Test0() {
    ++test_count_;
  }

  void Test1ConstRef(const std::string& a) {
    ++test_count_;
    result_.append(a);
  }

  void Test1Ptr(std::string* a) {
    ++test_count_;
    result_.append(*a);
  }

  void Test1Int(int a) {
    test_count_ += a;
  }

  void Test2Ptr(std::string* a, std::string* b) {
    ++test_count_;
    result_.append(*a);
    result_.append(*b);
  }

  void Test2Mixed(const std::string& a, std::string* b) {
    ++test_count_;
    result_.append(a);
    result_.append(*b);
  }

  int test_count() const { return test_count_; }
  const std::string& result() const { return result_; }

 private:
  friend class base::RefCounted<Foo>;

  ~Foo() {}

  int test_count_;
  std::string result_;
};

class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
 public:
  void QuitNow() {
    MessageLoop::current()->Quit();
  }

 private:
  friend class base::RefCounted<QuitMsgLoop>;

  ~QuitMsgLoop() {}
};

void RunTest_PostTask(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Add tests to message loop
  scoped_refptr<Foo> foo(new Foo());
  std::string a("a"), b("b"), c("c"), d("d");
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test0));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    foo.get(), &Foo::Test1ConstRef, a));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Ptr, &b));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Int, 100));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Ptr, &a, &c));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
    foo.get(), &Foo::Test2Mixed, a, &d));

  // After all tests, post a message that will shut down the message loop
  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      quit.get(), &QuitMsgLoop::QuitNow));

  // Now kick things off
  MessageLoop::current()->Run();

  EXPECT_EQ(foo->test_count(), 105);
  EXPECT_EQ(foo->result(), "abacad");
}

void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Add tests to message loop
  scoped_refptr<Foo> foo(new Foo());
  std::string a("a"), b("b"), c("c"), d("d");
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test0));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1ConstRef, a));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Ptr, &b));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test1Int, 100));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Ptr, &a, &c));
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      foo.get(), &Foo::Test2Mixed, a, &d));

  // After all tests, post a message that will shut down the message loop
  scoped_refptr<QuitMsgLoop> quit(new QuitMsgLoop());
  MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
      quit.get(), &QuitMsgLoop::QuitNow));

  // Now kick things off with the SEH block active.
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  EXPECT_EQ(foo->test_count(), 105);
  EXPECT_EQ(foo->result(), "abacad");
}

// This class runs slowly to simulate a large amount of work being done.
class SlowTask : public Task {
 public:
  SlowTask(int pause_ms, int* quit_counter)
      : pause_ms_(pause_ms), quit_counter_(quit_counter) {
  }
  virtual void Run() {
    PlatformThread::Sleep(pause_ms_);
    if (--(*quit_counter_) == 0)
      MessageLoop::current()->Quit();
  }
 private:
  int pause_ms_;
  int* quit_counter_;
};

// This class records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
class RecordRunTimeTask : public SlowTask {
 public:
  RecordRunTimeTask(Time* run_time, int* quit_counter)
      : SlowTask(10, quit_counter), run_time_(run_time) {
  }
  virtual void Run() {
    *run_time_ = Time::Now();
    // Cause our Run function to take some time to execute.  As a result we can
    // count on subsequent RecordRunTimeTask objects running at a future time,
    // without worry about the resolution of our system clock being an issue.
    SlowTask::Run();
  }
 private:
  Time* run_time_;
};

void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that PostDelayedTask results in a delayed task.

  const int kDelayMS = 100;

  int num_tasks = 1;
  Time run_time;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);

  Time time_before_run = Time::Now();
  loop.Run();
  Time time_after_run = Time::Now();

  EXPECT_EQ(0, num_tasks);
  EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
}

void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that two tasks with different delays run in the right order.

  int num_tasks = 2;
  Time run_time1, run_time2;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
  // If we get a large pause in execution (due to a context switch) here, this
  // test could fail.
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 < run_time1);
}

void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that two tasks with the same delay run in the order in which they
  // were posted.
  //
  // NOTE: This is actually an approximate test since the API only takes a
  // "delay" parameter, so we are not exactly simulating two tasks that get
  // posted at the exact same time.  It would be nice if the API allowed us to
  // specify the desired run time.

  const int kDelayMS = 100;

  int num_tasks = 2;
  Time run_time1, run_time2;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time1 < run_time2);
}

void RunTest_PostDelayedTask_InPostOrder_2(
    MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that a delayed task still runs after a normal tasks even if the
  // normal tasks take a long time to run.

  const int kPauseMS = 50;

  int num_tasks = 2;
  Time run_time;

  loop.PostTask(
      FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);

  Time time_before_run = Time::Now();
  loop.Run();
  Time time_after_run = Time::Now();

  EXPECT_EQ(0, num_tasks);

  EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
}

void RunTest_PostDelayedTask_InPostOrder_3(
    MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that a delayed task still runs after a pile of normal tasks.  The key
  // difference between this test and the previous one is that here we return
  // the MessageLoop a lot so we give the MessageLoop plenty of opportunities
  // to maybe run the delayed task.  It should know not to do so until the
  // delayed task's delay has passed.

  int num_tasks = 11;
  Time run_time1, run_time2;

  // Clutter the ML with tasks.
  for (int i = 1; i < num_tasks; ++i)
    loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  EXPECT_TRUE(run_time2 > run_time1);
}

void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  // Test that the interval of the timer, used to run the next delayed task, is
  // set to a value corresponding to when the next delayed task should run.

  // By setting num_tasks to 1, we ensure that the first task to run causes the
  // run loop to exit.
  int num_tasks = 1;
  Time run_time1, run_time2;

  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);

  Time start_time = Time::Now();

  loop.Run();
  EXPECT_EQ(0, num_tasks);

  // Ensure that we ran in far less time than the slower timer.
  TimeDelta total_time = Time::Now() - start_time;
  EXPECT_GT(5000, total_time.InMilliseconds());

  // In case both timers somehow run at nearly the same time, sleep a little
  // and then run all pending to force them both to have run.  This is just
  // encouraging flakiness if there is any.
  PlatformThread::Sleep(100);
  loop.RunAllPending();

  EXPECT_TRUE(run_time1.is_null());
  EXPECT_FALSE(run_time2.is_null());
}

#if defined(OS_WIN)

class SubPumpTask : public Task {
 public:
  virtual void Run() {
    MessageLoop::current()->SetNestableTasksAllowed(true);
    MSG msg;
    while (GetMessage(&msg, NULL, 0, 0)) {
      TranslateMessage(&msg);
      DispatchMessage(&msg);
    }
    MessageLoop::current()->Quit();
  }
};

class SubPumpQuitTask : public Task {
 public:
  SubPumpQuitTask() {
  }
  virtual void Run() {
    PostQuitMessage(0);
  }
};

void RunTest_PostDelayedTask_SharedTimer_SubPump() {
  MessageLoop loop(MessageLoop::TYPE_UI);

  // Test that the interval of the timer, used to run the next delayed task, is
  // set to a value corresponding to when the next delayed task should run.

  // By setting num_tasks to 1, we ensure that the first task to run causes the
  // run loop to exit.
  int num_tasks = 1;
  Time run_time;

  loop.PostTask(FROM_HERE, new SubPumpTask());

  // This very delayed task should never run.
  loop.PostDelayedTask(
      FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);

  // This slightly delayed task should run from within SubPumpTask::Run().
  loop.PostDelayedTask(
      FROM_HERE, new SubPumpQuitTask(), 10);

  Time start_time = Time::Now();

  loop.Run();
  EXPECT_EQ(1, num_tasks);

  // Ensure that we ran in far less time than the slower timer.
  TimeDelta total_time = Time::Now() - start_time;
  EXPECT_GT(5000, total_time.InMilliseconds());

  // In case both timers somehow run at nearly the same time, sleep a little
  // and then run all pending to force them both to have run.  This is just
  // encouraging flakiness if there is any.
  PlatformThread::Sleep(100);
  loop.RunAllPending();

  EXPECT_TRUE(run_time.is_null());
}

#endif  // defined(OS_WIN)

class RecordDeletionTask : public Task {
 public:
  RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
      : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
  }
  ~RecordDeletionTask() {
    *was_deleted_ = true;
    if (post_on_delete_)
      MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
  }
  virtual void Run() {}
 private:
  Task* post_on_delete_;
  bool* was_deleted_;
};

void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  {
    MessageLoop loop(message_loop_type);
    loop.PostTask(
        FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
    loop.PostDelayedTask(
        FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
}

void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
  bool a_was_deleted = false;
  bool b_was_deleted = false;
  bool c_was_deleted = false;
  {
    MessageLoop loop(message_loop_type);
    RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
    RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
    RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
    loop.PostTask(FROM_HERE, c);
  }
  EXPECT_TRUE(a_was_deleted);
  EXPECT_TRUE(b_was_deleted);
  EXPECT_TRUE(c_was_deleted);
}

class NestingTest : public Task {
 public:
  explicit NestingTest(int* depth) : depth_(depth) {
  }
  void Run() {
    if (*depth_ > 0) {
      *depth_ -= 1;
      MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));

      MessageLoop::current()->SetNestableTasksAllowed(true);
      MessageLoop::current()->Run();
    }
    MessageLoop::current()->Quit();
  }
 private:
  int* depth_;
};

#if defined(OS_WIN)

LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
  ADD_FAILURE() << "bad exception handler";
  ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
  return EXCEPTION_EXECUTE_HANDLER;
}

// This task throws an SEH exception: initially write to an invalid address.
// If the right SEH filter is installed, it will fix the error.
class CrasherTask : public Task {
 public:
  // Ctor. If trash_SEH_handler is true, the task will override the unhandled
  // exception handler with one sure to crash this test.
  explicit CrasherTask(bool trash_SEH_handler)
      : trash_SEH_handler_(trash_SEH_handler) {
  }
  void Run() {
    PlatformThread::Sleep(1);
    if (trash_SEH_handler_)
      ::SetUnhandledExceptionFilter(&BadExceptionHandler);
    // Generate a SEH fault. We do it in asm to make sure we know how to undo
    // the damage.

#if defined(_M_IX86)

    __asm {
      mov eax, dword ptr [CrasherTask::bad_array_]
      mov byte ptr [eax], 66
    }

#elif defined(_M_X64)

    bad_array_[0] = 66;

#else
#error "needs architecture support"
#endif

    MessageLoop::current()->Quit();
  }
  // Points the bad array to a valid memory location.
  static void FixError() {
    bad_array_ = &valid_store_;
  }

 private:
  bool trash_SEH_handler_;
  static volatile char* bad_array_;
  static char valid_store_;
};

volatile char* CrasherTask::bad_array_ = 0;
char CrasherTask::valid_store_ = 0;

// This SEH filter fixes the problem and retries execution. Fixing requires
// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
// so we move the instruction pointer 5 bytes back.
LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
  if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
    return EXCEPTION_EXECUTE_HANDLER;

  CrasherTask::FixError();

#if defined(_M_IX86)

  ex_info->ContextRecord->Eip -= 5;

#elif defined(_M_X64)

  ex_info->ContextRecord->Rip -= 5;

#endif

  return EXCEPTION_CONTINUE_EXECUTION;
}

void RunTest_Crasher(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  if (::IsDebuggerPresent())
    return;

  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);

  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  ::SetUnhandledExceptionFilter(old_SEH_filter);
}

void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  if (::IsDebuggerPresent())
    return;

  LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
      ::SetUnhandledExceptionFilter(&HandleCrasherTaskException);

  MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
  MessageLoop::current()->set_exception_restoration(true);
  MessageLoop::current()->Run();
  MessageLoop::current()->set_exception_restoration(false);

  ::SetUnhandledExceptionFilter(old_SEH_filter);
}

#endif  // defined(OS_WIN)

void RunTest_Nesting(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  int depth = 100;
  MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
  MessageLoop::current()->Run();
  EXPECT_EQ(depth, 0);
}

const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";

enum TaskType {
  MESSAGEBOX,
  ENDDIALOG,
  RECURSIVE,
  TIMEDMESSAGELOOP,
  QUITMESSAGELOOP,
  ORDERERD,
  PUMPS,
  SLEEP,
};

// Saves the order in which the tasks executed.
struct TaskItem {
  TaskItem(TaskType t, int c, bool s)
      : type(t),
        cookie(c),
        start(s) {
  }

  TaskType type;
  int cookie;
  bool start;

  bool operator == (const TaskItem& other) const {
    return type == other.type && cookie == other.cookie && start == other.start;
  }
};

typedef std::vector<TaskItem> TaskList;

std::ostream& operator <<(std::ostream& os, TaskType type) {
  switch (type) {
  case MESSAGEBOX:        os << "MESSAGEBOX"; break;
  case ENDDIALOG:         os << "ENDDIALOG"; break;
  case RECURSIVE:         os << "RECURSIVE"; break;
  case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
  case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
  case ORDERERD:          os << "ORDERERD"; break;
  case PUMPS:             os << "PUMPS"; break;
  case SLEEP:             os << "SLEEP"; break;
  default:
    NOTREACHED();
    os << "Unknown TaskType";
    break;
  }
  return os;
}

std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
  if (item.start)
    return os << item.type << " " << item.cookie << " starts";
  else
    return os << item.type << " " << item.cookie << " ends";
}

// Saves the order the tasks ran.
class OrderedTasks : public Task {
 public:
  OrderedTasks(TaskList* order, int cookie)
      : order_(order),
        type_(ORDERERD),
        cookie_(cookie) {
  }
  OrderedTasks(TaskList* order, TaskType type, int cookie)
      : order_(order),
        type_(type),
        cookie_(cookie) {
  }

  void RunStart() {
    TaskItem item(type_, cookie_, true);
    DVLOG(1) << item;
    order_->push_back(item);
  }
  void RunEnd() {
    TaskItem item(type_, cookie_, false);
    DVLOG(1) << item;
    order_->push_back(item);
  }

  virtual void Run() {
    RunStart();
    RunEnd();
  }

 protected:
  TaskList* order() const {
    return order_;
  }

  int cookie() const {
    return cookie_;
  }

 private:
  TaskList* order_;
  TaskType type_;
  int cookie_;
};

#if defined(OS_WIN)

// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
class MessageBoxTask : public OrderedTasks {
 public:
  MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
      : OrderedTasks(order, MESSAGEBOX, cookie),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    RunStart();
    if (is_reentrant_)
      MessageLoop::current()->SetNestableTasksAllowed(true);
    MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    RunEnd();
  }

 private:
  bool is_reentrant_;
};

// Will end the MessageBox.
class EndDialogTask : public OrderedTasks {
 public:
  EndDialogTask(TaskList* order, int cookie)
      : OrderedTasks(order, ENDDIALOG, cookie) {
  }

  virtual void Run() {
    RunStart();
    HWND window = GetActiveWindow();
    if (window != NULL) {
      EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
      // Cheap way to signal that the window wasn't found if RunEnd() isn't
      // called.
      RunEnd();
    }
  }
};

#endif  // defined(OS_WIN)

class RecursiveTask : public OrderedTasks {
 public:
  RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
      : OrderedTasks(order, RECURSIVE, cookie),
        depth_(depth),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    RunStart();
    if (depth_ > 0) {
      if (is_reentrant_)
        MessageLoop::current()->SetNestableTasksAllowed(true);
      MessageLoop::current()->PostTask(FROM_HERE,
          new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
    }
    RunEnd();
  }

 private:
  int depth_;
  bool is_reentrant_;
};

class QuitTask : public OrderedTasks {
 public:
  QuitTask(TaskList* order, int cookie)
      : OrderedTasks(order, QUITMESSAGELOOP, cookie) {
  }

  virtual void Run() {
    RunStart();
    MessageLoop::current()->Quit();
    RunEnd();
  }
};

class SleepTask : public OrderedTasks {
 public:
  SleepTask(TaskList* order, int cookie, int ms)
      : OrderedTasks(order, SLEEP, cookie), ms_(ms) {
  }

  virtual void Run() {
    RunStart();
    PlatformThread::Sleep(ms_);
    RunEnd();
  }

 private:
  int ms_;
};

#if defined(OS_WIN)

class Recursive2Tasks : public Task {
 public:
  Recursive2Tasks(MessageLoop* target,
                  HANDLE event,
                  bool expect_window,
                  TaskList* order,
                  bool is_reentrant)
      : target_(target),
        event_(event),
        expect_window_(expect_window),
        order_(order),
        is_reentrant_(is_reentrant) {
  }

  virtual void Run() {
    target_->PostTask(FROM_HERE,
                      new RecursiveTask(2, order_, 1, is_reentrant_));
    target_->PostTask(FROM_HERE,
                      new MessageBoxTask(order_, 2, is_reentrant_));
    target_->PostTask(FROM_HERE,
                      new RecursiveTask(2, order_, 3, is_reentrant_));
    // The trick here is that for recursive task processing, this task will be
    // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    // without a chance.
    // For non-recursive task processing, this will be executed _after_ the
    // MessageBox will have been dismissed by the code below, where
    // expect_window_ is true.
    target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
    target_->PostTask(FROM_HERE, new QuitTask(order_, 5));

    // Enforce that every tasks are sent before starting to run the main thread
    // message loop.
    ASSERT_TRUE(SetEvent(event_));

    // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    // you will never realize one MessageBox was shown.
    for (; expect_window_;) {
      HWND window = FindWindow(L"#32770", kMessageBoxTitle);
      if (window) {
        // Dismiss it.
        for (;;) {
          HWND button = FindWindowEx(window, NULL, L"Button", NULL);
          if (button != NULL) {
            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
            EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
            break;
          }
        }
        break;
      }
    }
  }

 private:
  MessageLoop* target_;
  HANDLE event_;
  TaskList* order_;
  bool expect_window_;
  bool is_reentrant_;
};

#endif  // defined(OS_WIN)

void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
  TaskList order;
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 1, false));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 2, false));
  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(14U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}

void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  TaskList order;
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 1, true));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new RecursiveTask(2, &order, 2, true));
  MessageLoop::current()->PostTask(FROM_HERE,
                                   new QuitTask(&order, 3));

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(14U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
  EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
}

#if defined(OS_WIN)
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.

// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  Thread worker("RecursiveDenial2_worker");
  Thread::Options options;
  options.message_loop_type = message_loop_type;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.message_loop()->PostTask(FROM_HERE,
                                  new Recursive2Tasks(MessageLoop::current(),
                                                      event,
                                                      true,
                                                      &order,
                                                      false));
  // Let the other thread execute.
  WaitForSingleObject(event, INFINITE);
  MessageLoop::current()->Run();

  ASSERT_EQ(order.size(), 17);
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
  // When EndDialogTask is processed, the window is already dismissed, hence no
  // "end" entry.
  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
}

// A side effect of this test is the generation a beep. Sorry.  This test also
// needs to process windows messages on the current thread.
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  Thread worker("RecursiveSupport2_worker");
  Thread::Options options;
  options.message_loop_type = message_loop_type;
  ASSERT_EQ(true, worker.StartWithOptions(options));
  TaskList order;
  ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
  worker.message_loop()->PostTask(FROM_HERE,
                                  new Recursive2Tasks(MessageLoop::current(),
                                                      event,
                                                      false,
                                                      &order,
                                                      true));
  // Let the other thread execute.
  WaitForSingleObject(event, INFINITE);
  MessageLoop::current()->Run();

  ASSERT_EQ(order.size(), 18);
  EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
  // Note that this executes in the MessageBox modal loop.
  EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
  EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
  EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
  /* The order can subtly change here. The reason is that when RecursiveTask(1)
     is called in the main thread, if it is faster than getting to the
     PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
     change. We don't care anyway that the order isn't correct.
  EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
  EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
  EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
  */
  EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
  EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
  EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
  EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
  EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
}

#endif  // defined(OS_WIN)

class TaskThatPumps : public OrderedTasks {
 public:
  TaskThatPumps(TaskList* order, int cookie)
      : OrderedTasks(order, PUMPS, cookie) {
  }

  virtual void Run() {
    RunStart();
    bool old_state = MessageLoop::current()->NestableTasksAllowed();
    MessageLoop::current()->SetNestableTasksAllowed(true);
    MessageLoop::current()->RunAllPending();
    MessageLoop::current()->SetNestableTasksAllowed(old_state);
    RunEnd();
  }
};

// Tests that non nestable tasks run in FIFO if there are no nested loops.
void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  TaskList order;

  Task* task = new OrderedTasks(&order, 1);
  MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
  MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(6U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
  EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
  EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
  EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
}

// Tests that non nestable tasks don't run when there's code in the call stack.
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
                                     bool use_delayed) {
  MessageLoop loop(message_loop_type);

  TaskList order;

  MessageLoop::current()->PostTask(FROM_HERE,
                                   new TaskThatPumps(&order, 1));
  Task* task = new OrderedTasks(&order, 2);
  if (use_delayed) {
    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1);
  } else {
    MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
  }
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
  MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50));
  MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5));
  Task* non_nestable_quit = new QuitTask(&order, 6);
  if (use_delayed) {
    MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE,
                                                       non_nestable_quit,
                                                       2);
  } else {
    MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
  }

  MessageLoop::current()->Run();

  // FIFO order.
  ASSERT_EQ(12U, order.size());
  EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
  EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
  EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
  EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true));
  EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false));
  EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true));
  EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false));
  EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false));
  EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true));
  EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false));
  EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true));
  EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false));
}

#if defined(OS_WIN)

class DispatcherImpl : public MessageLoopForUI::Dispatcher {
 public:
  DispatcherImpl() : dispatch_count_(0) {}

  virtual bool Dispatch(const MSG& msg) {
    ::TranslateMessage(&msg);
    ::DispatchMessage(&msg);
    // Do not count WM_TIMER since it is not what we post and it will cause
    // flakiness.
    if (msg.message != WM_TIMER)
      ++dispatch_count_;
    // We treat WM_LBUTTONUP as the last message.
    return msg.message != WM_LBUTTONUP;
  }

  int dispatch_count_;
};

void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  class MyTask : public Task {
  public:
    virtual void Run() {
      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
    }
  };
  Task* task = new MyTask();
  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
  DispatcherImpl dispatcher;
  MessageLoopForUI::current()->Run(&dispatcher);
  ASSERT_EQ(2, dispatcher.dispatch_count_);
}

LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
  if (code == base::MessagePumpForUI::kMessageFilterCode) {
    MSG* msg = reinterpret_cast<MSG*>(lparam);
    if (msg->message == WM_LBUTTONDOWN)
      return TRUE;
  }
  return FALSE;
}

void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
  MessageLoop loop(message_loop_type);

  class MyTask : public Task {
  public:
    virtual void Run() {
      PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
      PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
    }
  };
  Task* task = new MyTask();
  MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
  HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
                                    MsgFilterProc,
                                    NULL,
                                    GetCurrentThreadId());
  DispatcherImpl dispatcher;
  MessageLoopForUI::current()->Run(&dispatcher);
  ASSERT_EQ(1, dispatcher.dispatch_count_);
  UnhookWindowsHookEx(msg_hook);
}

class TestIOHandler : public MessageLoopForIO::IOHandler {
 public:
  TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);

  virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
                             DWORD bytes_transfered, DWORD error);

  void Init();
  void WaitForIO();
  OVERLAPPED* context() { return &context_.overlapped; }
  DWORD size() { return sizeof(buffer_); }

 private:
  char buffer_[48];
  MessageLoopForIO::IOContext context_;
  HANDLE signal_;
  ScopedHandle file_;
  bool wait_;
};

TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
    : signal_(signal), wait_(wait) {
  memset(buffer_, 0, sizeof(buffer_));
  memset(&context_, 0, sizeof(context_));
  context_.handler = this;

  file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
                       FILE_FLAG_OVERLAPPED, NULL));
  EXPECT_TRUE(file_.IsValid());
}

void TestIOHandler::Init() {
  MessageLoopForIO::current()->RegisterIOHandler(file_, this);

  DWORD read;
  EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
  EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
  if (wait_)
    WaitForIO();
}

void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
                                  DWORD bytes_transfered, DWORD error) {
  ASSERT_TRUE(context == &context_);
  ASSERT_TRUE(SetEvent(signal_));
}

void TestIOHandler::WaitForIO() {
  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
  EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
}

class IOHandlerTask : public Task {
 public:
  explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
  virtual void Run() {
    handler_->Init();
  }

 private:
  TestIOHandler* handler_;
};

void RunTest_IOHandler() {
  ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  ASSERT_TRUE(callback_called.IsValid());

  const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
  ScopedHandle server(CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1,
                                      0, 0, 0, NULL));
  ASSERT_TRUE(server.IsValid());

  Thread thread("IOHandler test");
  Thread::Options options;
  options.message_loop_type = MessageLoop::TYPE_IO;
  ASSERT_TRUE(thread.StartWithOptions(options));

  MessageLoop* thread_loop = thread.message_loop();
  ASSERT_TRUE(NULL != thread_loop);

  TestIOHandler handler(kPipeName, callback_called, false);
  IOHandlerTask* task = new IOHandlerTask(&handler);
  thread_loop->PostTask(FROM_HERE, task);
  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.

  const char buffer[] = "Hello there!";
  DWORD written;
  EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));

  DWORD result = WaitForSingleObject(callback_called, 1000);
  EXPECT_EQ(WAIT_OBJECT_0, result);

  thread.Stop();
}

void RunTest_WaitForIO() {
  ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL));
  ASSERT_TRUE(callback1_called.IsValid());
  ASSERT_TRUE(callback2_called.IsValid());

  const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
  const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
  ScopedHandle server1(CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1,
                                       0, 0, 0, NULL));
  ScopedHandle server2(CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1,
                                       0, 0, 0, NULL));
  ASSERT_TRUE(server1.IsValid());
  ASSERT_TRUE(server2.IsValid());

  Thread thread("IOHandler test");
  Thread::Options options;
  options.message_loop_type = MessageLoop::TYPE_IO;
  ASSERT_TRUE(thread.StartWithOptions(options));

  MessageLoop* thread_loop = thread.message_loop();
  ASSERT_TRUE(NULL != thread_loop);

  TestIOHandler handler1(kPipeName1, callback1_called, false);
  TestIOHandler handler2(kPipeName2, callback2_called, true);
  IOHandlerTask* task1 = new IOHandlerTask(&handler1);
  IOHandlerTask* task2 = new IOHandlerTask(&handler2);
  thread_loop->PostTask(FROM_HERE, task1);
  Sleep(100);  // Make sure the thread runs and sleeps for lack of work.
  thread_loop->PostTask(FROM_HERE, task2);
  Sleep(100);

  // At this time handler1 is waiting to be called, and the thread is waiting
  // on the Init method of handler2, filtering only handler2 callbacks.

  const char buffer[] = "Hello there!";
  DWORD written;
  EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
  Sleep(200);
  EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
      "handler1 has not been called";

  EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));

  HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
  DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
  EXPECT_EQ(WAIT_OBJECT_0, result);

  thread.Stop();
}

#endif  // defined(OS_WIN)

}  // namespace

//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop.  That way we are sure
// that message loops work properly in all configurations.  Of course, in some
// cases, a unit test may only be for a particular type of loop.

TEST(MessageLoopTest, PostTask) {
  RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
  RunTest_PostTask(MessageLoop::TYPE_UI);
  RunTest_PostTask(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostTask_SEH) {
  RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
  RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
  RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_Basic) {
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
  RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
  RunTest_PostDelayedTask_SharedTimer_SubPump();
}
#endif

// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) {
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
  RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
}

// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) {
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
  RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
TEST(MessageLoopTest, Crasher) {
  RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
  RunTest_Crasher(MessageLoop::TYPE_UI);
  RunTest_Crasher(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, CrasherNasty) {
  RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
  RunTest_CrasherNasty(MessageLoop::TYPE_UI);
  RunTest_CrasherNasty(MessageLoop::TYPE_IO);
}
#endif  // defined(OS_WIN)

TEST(MessageLoopTest, Nesting) {
  RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
  RunTest_Nesting(MessageLoop::TYPE_UI);
  RunTest_Nesting(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveDenial1) {
  RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
  RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveSupport1) {
  RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
  RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
}

#if defined(OS_WIN)
// This test occasionally hangs http://crbug.com/44567
TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
  RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
  RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
  RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, RecursiveSupport2) {
  // This test requires a UI loop
  RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
}
#endif  // defined(OS_WIN)

TEST(MessageLoopTest, NonNestableWithNoNesting) {
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
  RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
}

TEST(MessageLoopTest, NonNestableInNestedLoop) {
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
}

TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
  RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
}

class DummyTask : public Task {
 public:
  explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {}

  virtual void Run() {
    if (num_tasks_ > 1) {
      MessageLoop::current()->PostTask(
          FROM_HERE,
          new DummyTask(num_tasks_ - 1));
    } else {
      MessageLoop::current()->Quit();
    }
  }

 private:
  const int num_tasks_;
};

class DummyTaskObserver : public MessageLoop::TaskObserver {
 public:
  explicit DummyTaskObserver(int num_tasks)
      : num_tasks_started_(0),
        num_tasks_processed_(0),
        num_tasks_(num_tasks) {}

  virtual ~DummyTaskObserver() {}

  virtual void WillProcessTask(const Task* task) {
    num_tasks_started_++;
    EXPECT_TRUE(task != NULL);
    EXPECT_LE(num_tasks_started_, num_tasks_);
    EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
  }

  virtual void DidProcessTask(const Task* task) {
    num_tasks_processed_++;
    EXPECT_TRUE(task != NULL);
    EXPECT_LE(num_tasks_started_, num_tasks_);
    EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
  }

  int num_tasks_started() const { return num_tasks_started_; }
  int num_tasks_processed() const { return num_tasks_processed_; }

 private:
  int num_tasks_started_;
  int num_tasks_processed_;
  const int num_tasks_;

  DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};

TEST(MessageLoopTest, TaskObserver) {
  const int kNumTasks = 6;
  DummyTaskObserver observer(kNumTasks);

  MessageLoop loop;
  loop.AddTaskObserver(&observer);
  loop.PostTask(FROM_HERE, new DummyTask(kNumTasks));
  loop.Run();
  loop.RemoveTaskObserver(&observer);

  EXPECT_EQ(kNumTasks, observer.num_tasks_started());
  EXPECT_EQ(kNumTasks, observer.num_tasks_processed());
}

#if defined(OS_WIN)
TEST(MessageLoopTest, Dispatcher) {
  // This test requires a UI loop
  RunTest_Dispatcher(MessageLoop::TYPE_UI);
}

TEST(MessageLoopTest, DispatcherWithMessageHook) {
  // This test requires a UI loop
  RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
}

TEST(MessageLoopTest, IOHandler) {
  RunTest_IOHandler();
}

TEST(MessageLoopTest, WaitForIO) {
  RunTest_WaitForIO();
}

TEST(MessageLoopTest, HighResolutionTimer) {
  MessageLoop loop;

  const int kFastTimerMs = 5;
  const int kSlowTimerMs = 100;

  EXPECT_EQ(false, loop.high_resolution_timers_enabled());

  // Post a fast task to enable the high resolution timers.
  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs);
  loop.Run();
  EXPECT_EQ(true, loop.high_resolution_timers_enabled());

  // Post a slow task and verify high resolution timers
  // are still enabled.
  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
  loop.Run();
  EXPECT_EQ(true, loop.high_resolution_timers_enabled());

  // Wait for a while so that high-resolution mode elapses.
  Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs);

  // Post a slow task to disable the high resolution timers.
  loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs);
  loop.Run();
  EXPECT_EQ(false, loop.high_resolution_timers_enabled());
}

#endif  // defined(OS_WIN)

#if defined(OS_POSIX) && !defined(OS_NACL)

namespace {

class QuitDelegate : public base::MessagePumpLibevent::Watcher {
 public:
  virtual void OnFileCanWriteWithoutBlocking(int fd) {
    MessageLoop::current()->Quit();
  }
  virtual void OnFileCanReadWithoutBlocking(int fd) {
    MessageLoop::current()->Quit();
  }
};

TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
  // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
  // This could happen when people use the Singleton pattern or atexit.

  // Create a file descriptor.  Doesn't need to be readable or writable,
  // as we don't need to actually get any notifications.
  // pipe() is just the easiest way to do it.
  int pipefds[2];
  int err = pipe(pipefds);
  ASSERT_EQ(0, err);
  int fd = pipefds[1];
  {
    // Arrange for controller to live longer than message loop.
    base::MessagePumpLibevent::FileDescriptorWatcher controller;
    {
      MessageLoopForIO message_loop;

      QuitDelegate delegate;
      message_loop.WatchFileDescriptor(fd,
          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
      // and don't run the message loop, just destroy it.
    }
  }
  if (HANDLE_EINTR(close(pipefds[0])) < 0)
    PLOG(ERROR) << "close";
  if (HANDLE_EINTR(close(pipefds[1])) < 0)
    PLOG(ERROR) << "close";
}

TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
  // Verify that it's ok to call StopWatchingFileDescriptor().
  // (Errors only showed up in valgrind.)
  int pipefds[2];
  int err = pipe(pipefds);
  ASSERT_EQ(0, err);
  int fd = pipefds[1];
  {
    // Arrange for message loop to live longer than controller.
    MessageLoopForIO message_loop;
    {
      base::MessagePumpLibevent::FileDescriptorWatcher controller;

      QuitDelegate delegate;
      message_loop.WatchFileDescriptor(fd,
          true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
      controller.StopWatchingFileDescriptor();
    }
  }
  if (HANDLE_EINTR(close(pipefds[0])) < 0)
    PLOG(ERROR) << "close";
  if (HANDLE_EINTR(close(pipefds[1])) < 0)
    PLOG(ERROR) << "close";
}

}  // namespace

#endif  // defined(OS_POSIX) && !defined(OS_NACL)

namespace {
class RunAtDestructionTask : public Task {
 public:
  RunAtDestructionTask(bool* task_destroyed, bool* destruction_observer_called)
      : task_destroyed_(task_destroyed),
        destruction_observer_called_(destruction_observer_called) {
  }
  ~RunAtDestructionTask() {
    EXPECT_FALSE(*destruction_observer_called_);
    *task_destroyed_ = true;
  }
  virtual void Run() {
    // This task should never run.
    ADD_FAILURE();
  }
 private:
  bool* task_destroyed_;
  bool* destruction_observer_called_;
};

class MLDestructionObserver : public MessageLoop::DestructionObserver {
 public:
  MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
      : task_destroyed_(task_destroyed),
        destruction_observer_called_(destruction_observer_called),
        task_destroyed_before_message_loop_(false) {
  }
  virtual void WillDestroyCurrentMessageLoop() {
    task_destroyed_before_message_loop_ = *task_destroyed_;
    *destruction_observer_called_ = true;
  }
  bool task_destroyed_before_message_loop() const {
    return task_destroyed_before_message_loop_;
  }
 private:
  bool* task_destroyed_;
  bool* destruction_observer_called_;
  bool task_destroyed_before_message_loop_;
};

}  // namespace

TEST(MessageLoopTest, DestructionObserverTest) {
  // Verify that the destruction observer gets called at the very end (after
  // all the pending tasks have been destroyed).
  MessageLoop* loop = new MessageLoop;
  const int kDelayMS = 100;

  bool task_destroyed = false;
  bool destruction_observer_called = false;

  MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
  loop->AddDestructionObserver(&observer);
  loop->PostDelayedTask(
      FROM_HERE,
      new RunAtDestructionTask(&task_destroyed, &destruction_observer_called),
      kDelayMS);
  delete loop;
  EXPECT_TRUE(observer.task_destroyed_before_message_loop());
  // The task should have been destroyed when we deleted the loop.
  EXPECT_TRUE(task_destroyed);
  EXPECT_TRUE(destruction_observer_called);
}