1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_pump_win.h"
#include <math.h>
#include "base/histogram.h"
#include "base/win_util.h"
namespace base {
static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
// Message sent to get an additional time slice for pumping (processing) another
// task (a series of such messages creates a continuous task pump).
static const int kMsgHaveWork = WM_USER + 1;
#ifndef NDEBUG
// Force exercise of polling model.
static const int kMaxWaitObjects = 8;
#else
static const int kMaxWaitObjects = MAXIMUM_WAIT_OBJECTS;
#endif
//-----------------------------------------------------------------------------
// MessagePumpWin public:
MessagePumpWin::MessagePumpWin() : have_work_(0), state_(NULL) {
InitMessageWnd();
}
MessagePumpWin::~MessagePumpWin() {
DestroyWindow(message_hwnd_);
}
void MessagePumpWin::WatchObject(HANDLE object, Watcher* watcher) {
DCHECK(object);
DCHECK_NE(object, INVALID_HANDLE_VALUE);
std::vector<HANDLE>::iterator it =
find(objects_.begin(), objects_.end(), object);
if (watcher) {
if (it == objects_.end()) {
static size_t warning_multiple = 1;
if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) {
LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2
<< " objects being watched";
// This DCHECK() is an artificial limitation, meant to warn us if we
// start creating too many objects. It can safely be raised to a higher
// level, and the program is designed to handle much larger values.
// Before raising this limit, make sure that there is a very good reason
// (in your debug testing) to be watching this many objects.
DCHECK(2 <= warning_multiple);
++warning_multiple;
}
objects_.push_back(object);
watchers_.push_back(watcher);
} else {
watchers_[it - objects_.begin()] = watcher;
}
} else if (it != objects_.end()) {
std::vector<HANDLE>::difference_type index = it - objects_.begin();
objects_.erase(it);
watchers_.erase(watchers_.begin() + index);
}
}
void MessagePumpWin::AddObserver(Observer* observer) {
observers_.AddObserver(observer);
}
void MessagePumpWin::RemoveObserver(Observer* observer) {
observers_.RemoveObserver(observer);
}
void MessagePumpWin::WillProcessMessage(const MSG& msg) {
FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
}
void MessagePumpWin::DidProcessMessage(const MSG& msg) {
FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
}
void MessagePumpWin::PumpOutPendingPaintMessages() {
// Create a mini-message-pump to force immediate processing of only Windows
// WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
// to get the job done. Actual common max is 4 peeks, but we'll be a little
// safe here.
const int kMaxPeekCount = 20;
bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000;
int peek_count;
for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
MSG msg;
if (win2k) {
if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE))
break;
} else {
if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
break;
}
ProcessMessageHelper(msg);
if (state_->should_quit) // Handle WM_QUIT.
break;
}
// Histogram what was really being used, to help to adjust kMaxPeekCount.
DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count);
}
void MessagePumpWin::RunWithDispatcher(
Delegate* delegate, Dispatcher* dispatcher) {
RunState s;
s.delegate = delegate;
s.dispatcher = dispatcher;
s.should_quit = false;
s.run_depth = state_ ? state_->run_depth + 1 : 1;
RunState* previous_state = state_;
state_ = &s;
DoRunLoop();
state_ = previous_state;
}
void MessagePumpWin::Quit() {
DCHECK(state_);
state_->should_quit = true;
}
void MessagePumpWin::ScheduleWork() {
if (InterlockedExchange(&have_work_, 1))
return; // Someone else continued the pumping.
// Make sure the MessagePump does some work for us.
PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
}
void MessagePumpWin::ScheduleDelayedWork(const Time& delayed_work_time) {
//
// We would *like* to provide high resolution timers. Windows timers using
// SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
// mechanism because the application can enter modal windows loops where it
// is not running our MessageLoop; the only way to have our timers fire in
// these cases is to post messages there.
//
// To provide sub-10ms timers, we process timers directly from our run loop.
// For the common case, timers will be processed there as the run loop does
// its normal work. However, we *also* set the system timer so that WM_TIMER
// events fire. This mops up the case of timers not being able to work in
// modal message loops. It is possible for the SetTimer to pop and have no
// pending timers, because they could have already been processed by the
// run loop itself.
//
// We use a single SetTimer corresponding to the timer that will expire
// soonest. As new timers are created and destroyed, we update SetTimer.
// Getting a spurrious SetTimer event firing is benign, as we'll just be
// processing an empty timer queue.
//
delayed_work_time_ = delayed_work_time;
int delay_msec = GetCurrentDelay();
DCHECK(delay_msec >= 0);
if (delay_msec < USER_TIMER_MINIMUM)
delay_msec = USER_TIMER_MINIMUM;
// Create a WM_TIMER event that will wake us up to check for any pending
// timers (in case we are running within a nested, external sub-pump).
SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
}
//-----------------------------------------------------------------------------
// MessagePumpWin private:
// static
LRESULT CALLBACK MessagePumpWin::WndProcThunk(
HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
switch (message) {
case kMsgHaveWork:
reinterpret_cast<MessagePumpWin*>(wparam)->HandleWorkMessage();
break;
case WM_TIMER:
reinterpret_cast<MessagePumpWin*>(wparam)->HandleTimerMessage();
break;
}
return DefWindowProc(hwnd, message, wparam, lparam);
}
void MessagePumpWin::InitMessageWnd() {
HINSTANCE hinst = GetModuleHandle(NULL);
WNDCLASSEX wc = {0};
wc.cbSize = sizeof(wc);
wc.lpfnWndProc = WndProcThunk;
wc.hInstance = hinst;
wc.lpszClassName = kWndClass;
RegisterClassEx(&wc);
message_hwnd_ =
CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
DCHECK(message_hwnd_);
}
void MessagePumpWin::HandleWorkMessage() {
// Let whatever would have run had we not been putting messages in the queue
// run now. This is an attempt to make our dummy message not starve other
// messages that may be in the Windows message queue. We also need to call
// this in order to ensure that have_work_ gets reset to 0.
ProcessPumpReplacementMessage();
// If we are being called outside of the context of Run, then don't do
// anything. This could correspond to a MessageBox call or something of
// that sort.
if (!state_)
return;
// Now give the delegate a chance to do some work. He'll let us know if he
// needs to do more work.
if (state_->delegate->DoWork())
ScheduleWork();
}
void MessagePumpWin::HandleTimerMessage() {
KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
// If we are being called outside of the context of Run, then don't do
// anything. This could correspond to a MessageBox call or something of
// that sort.
if (!state_)
return;
state_->delegate->DoDelayedWork(&delayed_work_time_);
if (!delayed_work_time_.is_null()) {
// A bit gratuitous to set delayed_work_time_ again, but oh well.
ScheduleDelayedWork(delayed_work_time_);
}
}
void MessagePumpWin::DoRunLoop() {
// IF this was just a simple PeekMessage() loop (servicing all passible work
// queues), then Windows would try to achieve the following order according
// to MSDN documentation about PeekMessage with no filter):
// * Sent messages
// * Posted messages
// * Sent messages (again)
// * WM_PAINT messages
// * WM_TIMER messages
//
// Summary: none of the above classes is starved, and sent messages has twice
// the chance of being processed (i.e., reduced service time).
for (;;) {
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// ProcessNextWindowsMessage(), there is a good chance there are still more
// messages waiting (same thing for ProcessNextObject(), which responds to
// only one signaled object; etc.). On the other hand, when any of these
// methods return having done no work, then it is pretty unlikely that
// calling them again quickly will find any work to do. Finally, if they
// all say they had no work, then it is a good time to consider sleeping
// (waiting) for more work.
bool more_work_is_plausible = ProcessNextWindowsMessage();
if (state_->should_quit)
break;
more_work_is_plausible |= state_->delegate->DoWork();
if (state_->should_quit)
break;
more_work_is_plausible |= ProcessNextObject();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
more_work_is_plausible =
state_->delegate->DoDelayedWork(&delayed_work_time_);
// If we did not process any delayed work, then we can assume that our
// existing WM_TIMER if any will fire when delayed work should run. We
// don't want to disturb that timer if it is already in flight. However,
// if we did do all remaining delayed work, then lets kill the WM_TIMER.
if (more_work_is_plausible && delayed_work_time_.is_null())
KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
more_work_is_plausible = state_->delegate->DoIdleWork();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
// We service APCs in WaitForWork, without returning.
WaitForWork(); // Wait (sleep) until we have work to do again.
}
}
// If we handle more than the OS limit on the number of objects that can be
// waited for, we'll need to poll (sequencing through subsets of the objects
// that can be passed in a single OS wait call). The following is the polling
// interval used in that (unusual) case. (I don't have a lot of justifcation
// for the specific value, but it needed to be short enough that it would not
// add a lot of latency, and long enough that we wouldn't thrash the CPU for no
// reason... especially considering the silly user probably has a million tabs
// open, etc.)
static const int kMultipleWaitPollingInterval = 20;
void MessagePumpWin::WaitForWork() {
// Wait until either an object is signaled or a message is available. Handle
// (without returning) any APCs (only the IO thread currently has APCs.)
// We do not support nested message loops when we have watched objects. This
// is to avoid messy recursion problems.
DCHECK(objects_.empty() || state_->run_depth == 1) <<
"Cannot nest a message loop when there are watched objects!";
int wait_flags = MWMO_ALERTABLE | MWMO_INPUTAVAILABLE;
bool use_polling = false; // Poll if too many objects for one OS Wait call.
for (;;) {
// Do initialization here, in case APC modifies object list.
size_t total_objs = objects_.size();
int delay;
size_t polling_index = 0; // The first unprocessed object index.
do {
size_t objs_len =
(polling_index < total_objs) ? total_objs - polling_index : 0;
if (objs_len >= MAXIMUM_WAIT_OBJECTS) {
objs_len = MAXIMUM_WAIT_OBJECTS - 1;
use_polling = true;
}
HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL;
// Only wait up to the time needed by the timer manager to fire the next
// set of timers.
delay = GetCurrentDelay();
if (use_polling && delay > kMultipleWaitPollingInterval)
delay = kMultipleWaitPollingInterval;
if (delay < 0) // Negative value means no timers waiting.
delay = INFINITE;
DWORD result;
result = MsgWaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
delay, QS_ALLINPUT, wait_flags);
if (WAIT_IO_COMPLETION == result) {
// We'll loop here when we service an APC. At it currently stands,
// *ONLY* the IO thread uses *any* APCs, so this should have no impact
// on the UI thread.
break; // Break to outer loop, and waitforwork() again.
}
// Use unsigned type to simplify range detection;
size_t signaled_index = result - WAIT_OBJECT_0;
if (signaled_index < objs_len) {
SignalWatcher(polling_index + signaled_index);
return; // We serviced a signaled object.
}
if (objs_len == signaled_index)
return; // A WM_* message is available.
DCHECK_NE(WAIT_FAILED, result) << GetLastError();
DCHECK(!objs || result == WAIT_TIMEOUT);
if (!use_polling)
return;
polling_index += objs_len;
} while (polling_index < total_objs);
// For compatibility, we didn't return sooner. This made us do *some* wait
// call(s) before returning. This will probably change in next rev.
if (!delay || !GetCurrentDelay())
return; // No work done, but timer is ready to fire.
}
}
bool MessagePumpWin::ProcessNextWindowsMessage() {
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
return ProcessMessageHelper(msg);
return false;
}
bool MessagePumpWin::ProcessMessageHelper(const MSG& msg) {
if (WM_QUIT == msg.message) {
// Repost the QUIT message so that it will be retrieved by the primary
// GetMessage() loop.
state_->should_quit = true;
PostQuitMessage(static_cast<int>(msg.wParam));
return false;
}
// While running our main message pump, we discard kMsgHaveWork messages.
if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
return ProcessPumpReplacementMessage();
WillProcessMessage(msg);
if (state_->dispatcher) {
if (!state_->dispatcher->Dispatch(msg))
state_->should_quit = true;
} else {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
DidProcessMessage(msg);
return true;
}
bool MessagePumpWin::ProcessPumpReplacementMessage() {
// When we encounter a kMsgHaveWork message, this method is called to peek
// and process a replacement message, such as a WM_PAINT or WM_TIMER. The
// goal is to make the kMsgHaveWork as non-intrusive as possible, even though
// a continuous stream of such messages are posted. This method carefully
// peeks a message while there is no chance for a kMsgHaveWork to be pending,
// then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
// possibly be posted), and finally dispatches that peeked replacement. Note
// that the re-post of kMsgHaveWork may be asynchronous to this thread!!
MSG msg;
bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
DCHECK(!have_message || kMsgHaveWork != msg.message ||
msg.hwnd != message_hwnd_);
// Since we discarded a kMsgHaveWork message, we must update the flag.
InterlockedExchange(&have_work_, 0);
// TODO(darin,jar): There is risk of being lost in a sub-pump within the call
// to ProcessMessageHelper, which could result in no longer getting a
// kMsgHaveWork message until the next out-of-band call to ScheduleWork.
return have_message && ProcessMessageHelper(msg);
}
// Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had
// to use SleepEx() to handle APCs when there were no objects.
bool MessagePumpWin::ProcessNextObject() {
size_t total_objs = objects_.size();
if (!total_objs) {
return false;
}
size_t polling_index = 0; // The first unprocessed object index.
do {
DCHECK(polling_index < total_objs);
size_t objs_len = total_objs - polling_index;
if (objs_len >= kMaxWaitObjects)
objs_len = kMaxWaitObjects - 1;
HANDLE* objs = polling_index + &objects_.front();
// Identify 1 pending object, or allow an IO APC to be completed.
DWORD result = WaitForMultipleObjectsEx(static_cast<DWORD>(objs_len), objs,
FALSE, // 1 signal is sufficient.
0, // Wait 0ms.
false); // Not alertable (no APC).
// Use unsigned type to simplify range detection;
size_t signaled_index = result - WAIT_OBJECT_0;
if (signaled_index < objs_len) {
SignalWatcher(polling_index + signaled_index);
return true; // We serviced a signaled object.
}
// If an handle is invalid, it will be WAIT_FAILED.
DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError();
polling_index += objs_len;
} while (polling_index < total_objs);
return false; // We serviced nothing.
}
bool MessagePumpWin::SignalWatcher(size_t object_index) {
// Signal the watcher corresponding to the given index.
DCHECK(objects_.size() > object_index);
// On reception of OnObjectSignaled() to a Watcher object, it may call
// WatchObject(). watchers_ and objects_ will be modified. This is expected,
// so don't be afraid if, while tracing a OnObjectSignaled() function, the
// corresponding watchers_[result] is non-existant.
watchers_[object_index]->OnObjectSignaled(objects_[object_index]);
// Signaled objects tend to be removed from the watch list, and then added
// back (appended). As a result, they move to the end of the objects_ array,
// and this should make their service "fair" (no HANDLEs should be starved).
return true;
}
int MessagePumpWin::GetCurrentDelay() const {
if (delayed_work_time_.is_null())
return -1;
// Be careful here. TimeDelta has a precision of microseconds, but we want a
// value in milliseconds. If there are 5.5ms left, should the delay be 5 or
// 6? It should be 6 to avoid executing delayed work too early.
double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF());
// If this value is negative, then we need to run delayed work soon.
int delay = static_cast<int>(timeout);
if (delay < 0)
delay = 0;
return delay;
}
} // namespace base
|