1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_PICKLE_H_
#define BASE_PICKLE_H_
#include <string>
#include "base/base_export.h"
#include "base/basictypes.h"
#include "base/compiler_specific.h"
#include "base/gtest_prod_util.h"
#include "base/logging.h"
#include "base/strings/string16.h"
#include "base/strings/string_piece.h"
namespace base {
class Pickle;
// PickleIterator reads data from a Pickle. The Pickle object must remain valid
// while the PickleIterator object is in use.
class BASE_EXPORT PickleIterator {
public:
PickleIterator() : payload_(NULL), read_index_(0), end_index_(0) {}
explicit PickleIterator(const Pickle& pickle);
// Methods for reading the payload of the Pickle. To read from the start of
// the Pickle, create a PickleIterator from a Pickle. If successful, these
// methods return true. Otherwise, false is returned to indicate that the
// result could not be extracted. It is not possible to read from the iterator
// after that.
bool ReadBool(bool* result) WARN_UNUSED_RESULT;
bool ReadInt(int* result) WARN_UNUSED_RESULT;
bool ReadLong(long* result) WARN_UNUSED_RESULT;
bool ReadUInt16(uint16* result) WARN_UNUSED_RESULT;
bool ReadUInt32(uint32* result) WARN_UNUSED_RESULT;
bool ReadInt64(int64* result) WARN_UNUSED_RESULT;
bool ReadUInt64(uint64* result) WARN_UNUSED_RESULT;
bool ReadSizeT(size_t* result) WARN_UNUSED_RESULT;
bool ReadFloat(float* result) WARN_UNUSED_RESULT;
bool ReadDouble(double* result) WARN_UNUSED_RESULT;
bool ReadString(std::string* result) WARN_UNUSED_RESULT;
// The StringPiece data will only be valid for the lifetime of the message.
bool ReadStringPiece(StringPiece* result) WARN_UNUSED_RESULT;
bool ReadString16(string16* result) WARN_UNUSED_RESULT;
// The StringPiece16 data will only be valid for the lifetime of the message.
bool ReadStringPiece16(StringPiece16* result) WARN_UNUSED_RESULT;
// A pointer to the data will be placed in |*data|, and the length will be
// placed in |*length|. The pointer placed into |*data| points into the
// message's buffer so it will be scoped to the lifetime of the message (or
// until the message data is mutated). Do not keep the pointer around!
bool ReadData(const char** data, int* length) WARN_UNUSED_RESULT;
// A pointer to the data will be placed in |*data|. The caller specifies the
// number of bytes to read, and ReadBytes will validate this length. The
// pointer placed into |*data| points into the message's buffer so it will be
// scoped to the lifetime of the message (or until the message data is
// mutated). Do not keep the pointer around!
bool ReadBytes(const char** data, int length) WARN_UNUSED_RESULT;
// A safer version of ReadInt() that checks for the result not being negative.
// Use it for reading the object sizes.
bool ReadLength(int* result) WARN_UNUSED_RESULT {
return ReadInt(result) && *result >= 0;
}
// Skips bytes in the read buffer and returns true if there are at least
// num_bytes available. Otherwise, does nothing and returns false.
bool SkipBytes(int num_bytes) WARN_UNUSED_RESULT {
return !!GetReadPointerAndAdvance(num_bytes);
}
private:
// Read Type from Pickle.
template <typename Type>
bool ReadBuiltinType(Type* result);
// Advance read_index_ but do not allow it to exceed end_index_.
// Keeps read_index_ aligned.
void Advance(size_t size);
// Get read pointer for Type and advance read pointer.
template<typename Type>
const char* GetReadPointerAndAdvance();
// Get read pointer for |num_bytes| and advance read pointer. This method
// checks num_bytes for negativity and wrapping.
const char* GetReadPointerAndAdvance(int num_bytes);
// Get read pointer for (num_elements * size_element) bytes and advance read
// pointer. This method checks for int overflow, negativity and wrapping.
const char* GetReadPointerAndAdvance(int num_elements,
size_t size_element);
const char* payload_; // Start of our pickle's payload.
size_t read_index_; // Offset of the next readable byte in payload.
size_t end_index_; // Payload size.
FRIEND_TEST_ALL_PREFIXES(PickleTest, GetReadPointerAndAdvance);
};
// This class provides facilities for basic binary value packing and unpacking.
//
// The Pickle class supports appending primitive values (ints, strings, etc.)
// to a pickle instance. The Pickle instance grows its internal memory buffer
// dynamically to hold the sequence of primitive values. The internal memory
// buffer is exposed as the "data" of the Pickle. This "data" can be passed
// to a Pickle object to initialize it for reading.
//
// When reading from a Pickle object, it is important for the consumer to know
// what value types to read and in what order to read them as the Pickle does
// not keep track of the type of data written to it.
//
// The Pickle's data has a header which contains the size of the Pickle's
// payload. It can optionally support additional space in the header. That
// space is controlled by the header_size parameter passed to the Pickle
// constructor.
//
class BASE_EXPORT Pickle {
public:
// Initialize a Pickle object using the default header size.
Pickle();
// Initialize a Pickle object with the specified header size in bytes, which
// must be greater-than-or-equal-to sizeof(Pickle::Header). The header size
// will be rounded up to ensure that the header size is 32bit-aligned.
explicit Pickle(int header_size);
// Initializes a Pickle from a const block of data. The data is not copied;
// instead the data is merely referenced by this Pickle. Only const methods
// should be used on the Pickle when initialized this way. The header
// padding size is deduced from the data length.
Pickle(const char* data, int data_len);
// Initializes a Pickle as a deep copy of another Pickle.
Pickle(const Pickle& other);
// Note: There are no virtual methods in this class. This destructor is
// virtual as an element of defensive coding. Other classes have derived from
// this class, and there is a *chance* that they will cast into this base
// class before destruction. At least one such class does have a virtual
// destructor, suggesting at least some need to call more derived destructors.
virtual ~Pickle();
// Performs a deep copy.
Pickle& operator=(const Pickle& other);
// Returns the number of bytes written in the Pickle, including the header.
size_t size() const { return header_size_ + header_->payload_size; }
// Returns the data for this Pickle.
const void* data() const { return header_; }
// Returns the effective memory capacity of this Pickle, that is, the total
// number of bytes currently dynamically allocated or 0 in the case of a
// read-only Pickle. This should be used only for diagnostic / profiling
// purposes.
size_t GetTotalAllocatedSize() const;
// Methods for adding to the payload of the Pickle. These values are
// appended to the end of the Pickle's payload. When reading values from a
// Pickle, it is important to read them in the order in which they were added
// to the Pickle.
bool WriteBool(bool value) {
return WriteInt(value ? 1 : 0);
}
bool WriteInt(int value) {
return WritePOD(value);
}
// WARNING: DO NOT USE THIS METHOD IF PICKLES ARE PERSISTED IN ANY WAY.
// It will write whatever a "long" is on this architecture. On 32-bit
// platforms, it is 32 bits. On 64-bit platforms, it is 64 bits. If persisted
// pickles are still around after upgrading to 64-bit, or if they are copied
// between dissimilar systems, YOUR PICKLES WILL HAVE GONE BAD.
bool WriteLongUsingDangerousNonPortableLessPersistableForm(long value) {
return WritePOD(value);
}
bool WriteUInt16(uint16 value) {
return WritePOD(value);
}
bool WriteUInt32(uint32 value) {
return WritePOD(value);
}
bool WriteInt64(int64 value) {
return WritePOD(value);
}
bool WriteUInt64(uint64 value) {
return WritePOD(value);
}
bool WriteSizeT(size_t value) {
// Always write size_t as a 64-bit value to ensure compatibility between
// 32-bit and 64-bit processes.
return WritePOD(static_cast<uint64>(value));
}
bool WriteFloat(float value) {
return WritePOD(value);
}
bool WriteDouble(double value) {
return WritePOD(value);
}
bool WriteString(const StringPiece& value);
bool WriteString16(const StringPiece16& value);
// "Data" is a blob with a length. When you read it out you will be given the
// length. See also WriteBytes.
bool WriteData(const char* data, int length);
// "Bytes" is a blob with no length. The caller must specify the length both
// when reading and writing. It is normally used to serialize PoD types of a
// known size. See also WriteData.
bool WriteBytes(const void* data, int length);
// Reserves space for upcoming writes when multiple writes will be made and
// their sizes are computed in advance. It can be significantly faster to call
// Reserve() before calling WriteFoo() multiple times.
void Reserve(size_t additional_capacity);
// Payload follows after allocation of Header (header size is customizable).
struct Header {
uint32 payload_size; // Specifies the size of the payload.
};
// Returns the header, cast to a user-specified type T. The type T must be a
// subclass of Header and its size must correspond to the header_size passed
// to the Pickle constructor.
template <class T>
T* headerT() {
DCHECK_EQ(header_size_, sizeof(T));
return static_cast<T*>(header_);
}
template <class T>
const T* headerT() const {
DCHECK_EQ(header_size_, sizeof(T));
return static_cast<const T*>(header_);
}
// The payload is the pickle data immediately following the header.
size_t payload_size() const {
return header_ ? header_->payload_size : 0;
}
const char* payload() const {
return reinterpret_cast<const char*>(header_) + header_size_;
}
// Returns the address of the byte immediately following the currently valid
// header + payload.
const char* end_of_payload() const {
// This object may be invalid.
return header_ ? payload() + payload_size() : NULL;
}
protected:
char* mutable_payload() {
return reinterpret_cast<char*>(header_) + header_size_;
}
size_t capacity_after_header() const {
return capacity_after_header_;
}
// Resize the capacity, note that the input value should not include the size
// of the header.
void Resize(size_t new_capacity);
// Find the end of the pickled data that starts at range_start. Returns NULL
// if the entire Pickle is not found in the given data range.
static const char* FindNext(size_t header_size,
const char* range_start,
const char* range_end);
// The allocation granularity of the payload.
static const int kPayloadUnit;
private:
friend class PickleIterator;
Header* header_;
size_t header_size_; // Supports extra data between header and payload.
// Allocation size of payload (or -1 if allocation is const). Note: this
// doesn't count the header.
size_t capacity_after_header_;
// The offset at which we will write the next field. Note: this doesn't count
// the header.
size_t write_offset_;
// Just like WriteBytes, but with a compile-time size, for performance.
template<size_t length> void BASE_EXPORT WriteBytesStatic(const void* data);
// Writes a POD by copying its bytes.
template <typename T> bool WritePOD(const T& data) {
WriteBytesStatic<sizeof(data)>(&data);
return true;
}
inline void WriteBytesCommon(const void* data, size_t length);
FRIEND_TEST_ALL_PREFIXES(PickleTest, Resize);
FRIEND_TEST_ALL_PREFIXES(PickleTest, FindNext);
FRIEND_TEST_ALL_PREFIXES(PickleTest, FindNextWithIncompleteHeader);
FRIEND_TEST_ALL_PREFIXES(PickleTest, FindNextOverflow);
};
} // namespace base
#endif // BASE_PICKLE_H_
|