1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/memory.h"
#include <CoreFoundation/CoreFoundation.h>
#include <errno.h>
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <malloc/malloc.h>
#import <objc/runtime.h>
#include <new>
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/scoped_clear_errno.h"
#include "third_party/apple_apsl/CFBase.h"
#include "third_party/apple_apsl/malloc.h"
#if ARCH_CPU_32_BITS
#include <dlfcn.h>
#include <mach-o/nlist.h>
#include "base/threading/thread_local.h"
#include "third_party/mach_override/mach_override.h"
#endif // ARCH_CPU_32_BITS
namespace base {
// These are helpers for EnableTerminationOnHeapCorruption, which is a no-op
// on 64 bit Macs.
#if ARCH_CPU_32_BITS
namespace {
// Finds the library path for malloc() and thus the libC part of libSystem,
// which in Lion is in a separate image.
const char* LookUpLibCPath() {
const void* addr = reinterpret_cast<void*>(&malloc);
Dl_info info;
if (dladdr(addr, &info))
return info.dli_fname;
DLOG(WARNING) << "Could not find image path for malloc()";
return NULL;
}
typedef void(*malloc_error_break_t)(void);
malloc_error_break_t g_original_malloc_error_break = NULL;
// Returns the function pointer for malloc_error_break. This symbol is declared
// as __private_extern__ and cannot be dlsym()ed. Instead, use nlist() to
// get it.
malloc_error_break_t LookUpMallocErrorBreak() {
const char* lib_c_path = LookUpLibCPath();
if (!lib_c_path)
return NULL;
// Only need to look up two symbols, but nlist() requires a NULL-terminated
// array and takes no count.
struct nlist nl[3];
bzero(&nl, sizeof(nl));
// The symbol to find.
nl[0].n_un.n_name = const_cast<char*>("_malloc_error_break");
// A reference symbol by which the address of the desired symbol will be
// calculated.
nl[1].n_un.n_name = const_cast<char*>("_malloc");
int rv = nlist(lib_c_path, nl);
if (rv != 0 || nl[0].n_type == N_UNDF || nl[1].n_type == N_UNDF) {
return NULL;
}
// nlist() returns addresses as offsets in the image, not the instruction
// pointer in memory. Use the known in-memory address of malloc()
// to compute the offset for malloc_error_break().
uintptr_t reference_addr = reinterpret_cast<uintptr_t>(&malloc);
reference_addr -= nl[1].n_value;
reference_addr += nl[0].n_value;
return reinterpret_cast<malloc_error_break_t>(reference_addr);
}
// Combines ThreadLocalBoolean with AutoReset. It would be convenient
// to compose ThreadLocalPointer<bool> with base::AutoReset<bool>, but that
// would require allocating some storage for the bool.
class ThreadLocalBooleanAutoReset {
public:
ThreadLocalBooleanAutoReset(ThreadLocalBoolean* tlb, bool new_value)
: scoped_tlb_(tlb),
original_value_(tlb->Get()) {
scoped_tlb_->Set(new_value);
}
~ThreadLocalBooleanAutoReset() {
scoped_tlb_->Set(original_value_);
}
private:
ThreadLocalBoolean* scoped_tlb_;
bool original_value_;
DISALLOW_COPY_AND_ASSIGN(ThreadLocalBooleanAutoReset);
};
base::LazyInstance<ThreadLocalBoolean>::Leaky
g_unchecked_alloc = LAZY_INSTANCE_INITIALIZER;
// NOTE(shess): This is called when the malloc library noticed that the heap
// is fubar. Avoid calls which will re-enter the malloc library.
void CrMallocErrorBreak() {
g_original_malloc_error_break();
// Out of memory is certainly not heap corruption, and not necessarily
// something for which the process should be terminated. Leave that decision
// to the OOM killer.
if (errno == ENOMEM)
return;
// The malloc library attempts to log to ASL (syslog) before calling this
// code, which fails accessing a Unix-domain socket when sandboxed. The
// failed socket results in writing to a -1 fd, leaving EBADF in errno. If
// UncheckedMalloc() is on the stack, for large allocations (15k and up) only
// an OOM failure leads here. Smaller allocations could also arrive here due
// to freelist corruption, but there is no way to distinguish that from OOM at
// this point.
//
// NOTE(shess): I hypothesize that EPERM case in 10.9 is the same root cause
// as EBADF. Unfortunately, 10.9's opensource releases don't include malloc
// source code at this time.
// <http://crbug.com/312234>
if ((errno == EBADF || errno == EPERM) && g_unchecked_alloc.Get().Get())
return;
// A unit test checks this error message, so it needs to be in release builds.
char buf[1024] =
"Terminating process due to a potential for future heap corruption: "
"errno=";
char errnobuf[] = {
'0' + ((errno / 100) % 10),
'0' + ((errno / 10) % 10),
'0' + (errno % 10),
'\000'
};
COMPILE_ASSERT(ELAST <= 999, errno_too_large_to_encode);
strlcat(buf, errnobuf, sizeof(buf));
RAW_LOG(ERROR, buf);
// Crash by writing to NULL+errno to allow analyzing errno from
// crash dump info (setting a breakpad key would re-enter the malloc
// library). Max documented errno in intro(2) is actually 102, but
// it really just needs to be "small" to stay on the right vm page.
const int kMaxErrno = 256;
char* volatile death_ptr = NULL;
death_ptr += std::min(errno, kMaxErrno);
*death_ptr = '!';
}
} // namespace
#endif // ARCH_CPU_32_BITS
void EnableTerminationOnHeapCorruption() {
#if defined(ADDRESS_SANITIZER) || ARCH_CPU_64_BITS
// AddressSanitizer handles heap corruption, and on 64 bit Macs, the malloc
// system automatically abort()s on heap corruption.
return;
#else
// Only override once, otherwise CrMallocErrorBreak() will recurse
// to itself.
if (g_original_malloc_error_break)
return;
malloc_error_break_t malloc_error_break = LookUpMallocErrorBreak();
if (!malloc_error_break) {
DLOG(WARNING) << "Could not find malloc_error_break";
return;
}
mach_error_t err = mach_override_ptr(
(void*)malloc_error_break,
(void*)&CrMallocErrorBreak,
(void**)&g_original_malloc_error_break);
if (err != err_none)
DLOG(WARNING) << "Could not override malloc_error_break; error = " << err;
#endif // defined(ADDRESS_SANITIZER) || ARCH_CPU_64_BITS
}
// ------------------------------------------------------------------------
namespace {
bool g_oom_killer_enabled;
// Starting with Mac OS X 10.7, the zone allocators set up by the system are
// read-only, to prevent them from being overwritten in an attack. However,
// blindly unprotecting and reprotecting the zone allocators fails with
// GuardMalloc because GuardMalloc sets up its zone allocator using a block of
// memory in its bss. Explicit saving/restoring of the protection is required.
//
// This function takes a pointer to a malloc zone, de-protects it if necessary,
// and returns (in the out parameters) a region of memory (if any) to be
// re-protected when modifications are complete. This approach assumes that
// there is no contention for the protection of this memory.
void DeprotectMallocZone(ChromeMallocZone* default_zone,
mach_vm_address_t* reprotection_start,
mach_vm_size_t* reprotection_length,
vm_prot_t* reprotection_value) {
mach_port_t unused;
*reprotection_start = reinterpret_cast<mach_vm_address_t>(default_zone);
struct vm_region_basic_info_64 info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
kern_return_t result =
mach_vm_region(mach_task_self(),
reprotection_start,
reprotection_length,
VM_REGION_BASIC_INFO_64,
reinterpret_cast<vm_region_info_t>(&info),
&count,
&unused);
CHECK(result == KERN_SUCCESS);
result = mach_port_deallocate(mach_task_self(), unused);
CHECK(result == KERN_SUCCESS);
// Does the region fully enclose the zone pointers? Possibly unwarranted
// simplification used: using the size of a full version 8 malloc zone rather
// than the actual smaller size if the passed-in zone is not version 8.
CHECK(*reprotection_start <=
reinterpret_cast<mach_vm_address_t>(default_zone));
mach_vm_size_t zone_offset = reinterpret_cast<mach_vm_size_t>(default_zone) -
reinterpret_cast<mach_vm_size_t>(*reprotection_start);
CHECK(zone_offset + sizeof(ChromeMallocZone) <= *reprotection_length);
if (info.protection & VM_PROT_WRITE) {
// No change needed; the zone is already writable.
*reprotection_start = 0;
*reprotection_length = 0;
*reprotection_value = VM_PROT_NONE;
} else {
*reprotection_value = info.protection;
result = mach_vm_protect(mach_task_self(),
*reprotection_start,
*reprotection_length,
false,
info.protection | VM_PROT_WRITE);
CHECK(result == KERN_SUCCESS);
}
}
// === C malloc/calloc/valloc/realloc/posix_memalign ===
typedef void* (*malloc_type)(struct _malloc_zone_t* zone,
size_t size);
typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
size_t num_items,
size_t size);
typedef void* (*valloc_type)(struct _malloc_zone_t* zone,
size_t size);
typedef void (*free_type)(struct _malloc_zone_t* zone,
void* ptr);
typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
void* ptr,
size_t size);
typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
size_t alignment,
size_t size);
malloc_type g_old_malloc;
calloc_type g_old_calloc;
valloc_type g_old_valloc;
free_type g_old_free;
realloc_type g_old_realloc;
memalign_type g_old_memalign;
malloc_type g_old_malloc_purgeable;
calloc_type g_old_calloc_purgeable;
valloc_type g_old_valloc_purgeable;
free_type g_old_free_purgeable;
realloc_type g_old_realloc_purgeable;
memalign_type g_old_memalign_purgeable;
void* oom_killer_malloc(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_malloc(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_calloc(struct _malloc_zone_t* zone,
size_t num_items,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_calloc(zone, num_items, size);
if (!result && num_items && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_valloc(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_valloc(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void oom_killer_free(struct _malloc_zone_t* zone,
void* ptr) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
g_old_free(zone, ptr);
}
void* oom_killer_realloc(struct _malloc_zone_t* zone,
void* ptr,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_realloc(zone, ptr, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_memalign(struct _malloc_zone_t* zone,
size_t alignment,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_memalign(zone, alignment, size);
// Only die if posix_memalign would have returned ENOMEM, since there are
// other reasons why NULL might be returned (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
if (!result && size && alignment >= sizeof(void*)
&& (alignment & (alignment - 1)) == 0) {
debug::BreakDebugger();
}
return result;
}
void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_malloc_purgeable(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
size_t num_items,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_calloc_purgeable(zone, num_items, size);
if (!result && num_items && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_valloc_purgeable(zone, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void oom_killer_free_purgeable(struct _malloc_zone_t* zone,
void* ptr) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
g_old_free_purgeable(zone, ptr);
}
void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
void* ptr,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_realloc_purgeable(zone, ptr, size);
if (!result && size)
debug::BreakDebugger();
return result;
}
void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
size_t alignment,
size_t size) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
#endif // ARCH_CPU_32_BITS
void* result = g_old_memalign_purgeable(zone, alignment, size);
// Only die if posix_memalign would have returned ENOMEM, since there are
// other reasons why NULL might be returned (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
if (!result && size && alignment >= sizeof(void*)
&& (alignment & (alignment - 1)) == 0) {
debug::BreakDebugger();
}
return result;
}
// === C++ operator new ===
void oom_killer_new() {
debug::BreakDebugger();
}
// === Core Foundation CFAllocators ===
bool CanGetContextForCFAllocator() {
return !base::mac::IsOSLaterThanMavericks_DontCallThis();
}
CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
if (base::mac::IsOSSnowLeopard()) {
ChromeCFAllocatorLeopards* our_allocator =
const_cast<ChromeCFAllocatorLeopards*>(
reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator));
return &our_allocator->_context;
} else if (base::mac::IsOSLion() ||
base::mac::IsOSMountainLion() ||
base::mac::IsOSMavericks()) {
ChromeCFAllocatorLions* our_allocator =
const_cast<ChromeCFAllocatorLions*>(
reinterpret_cast<const ChromeCFAllocatorLions*>(allocator));
return &our_allocator->_context;
} else {
return NULL;
}
}
CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;
void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
CFOptionFlags hint,
void* info) {
void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
if (!result)
debug::BreakDebugger();
return result;
}
// === Cocoa NSObject allocation ===
typedef id (*allocWithZone_t)(id, SEL, NSZone*);
allocWithZone_t g_old_allocWithZone;
id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone)
{
id result = g_old_allocWithZone(self, _cmd, zone);
if (!result)
debug::BreakDebugger();
return result;
}
} // namespace
bool UncheckedMalloc(size_t size, void** result) {
if (g_old_malloc) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
ThreadLocalBooleanAutoReset flag(g_unchecked_alloc.Pointer(), true);
#endif // ARCH_CPU_32_BITS
*result = g_old_malloc(malloc_default_zone(), size);
} else {
*result = malloc(size);
}
return *result != NULL;
}
bool UncheckedCalloc(size_t num_items, size_t size, void** result) {
if (g_old_calloc) {
#if ARCH_CPU_32_BITS
ScopedClearErrno clear_errno;
ThreadLocalBooleanAutoReset flag(g_unchecked_alloc.Pointer(), true);
#endif // ARCH_CPU_32_BITS
*result = g_old_calloc(malloc_default_zone(), num_items, size);
} else {
*result = calloc(num_items, size);
}
return *result != NULL;
}
void* UncheckedMalloc(size_t size) {
void* address;
return UncheckedMalloc(size, &address) ? address : NULL;
}
void* UncheckedCalloc(size_t num_items, size_t size) {
void* address;
return UncheckedCalloc(num_items, size, &address) ? address : NULL;
}
void EnableTerminationOnOutOfMemory() {
if (g_oom_killer_enabled)
return;
g_oom_killer_enabled = true;
// === C malloc/calloc/valloc/realloc/posix_memalign ===
// This approach is not perfect, as requests for amounts of memory larger than
// MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will
// still fail with a NULL rather than dying (see
// http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details).
// Unfortunately, it's the best we can do. Also note that this does not affect
// allocations from non-default zones.
CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc &&
!g_old_memalign) << "Old allocators unexpectedly non-null";
CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable &&
!g_old_valloc_purgeable && !g_old_realloc_purgeable &&
!g_old_memalign_purgeable) << "Old allocators unexpectedly non-null";
#if !defined(ADDRESS_SANITIZER)
// Don't do anything special on OOM for the malloc zones replaced by
// AddressSanitizer, as modifying or protecting them may not work correctly.
ChromeMallocZone* default_zone =
reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
ChromeMallocZone* purgeable_zone =
reinterpret_cast<ChromeMallocZone*>(malloc_default_purgeable_zone());
mach_vm_address_t default_reprotection_start = 0;
mach_vm_size_t default_reprotection_length = 0;
vm_prot_t default_reprotection_value = VM_PROT_NONE;
DeprotectMallocZone(default_zone,
&default_reprotection_start,
&default_reprotection_length,
&default_reprotection_value);
mach_vm_address_t purgeable_reprotection_start = 0;
mach_vm_size_t purgeable_reprotection_length = 0;
vm_prot_t purgeable_reprotection_value = VM_PROT_NONE;
if (purgeable_zone) {
DeprotectMallocZone(purgeable_zone,
&purgeable_reprotection_start,
&purgeable_reprotection_length,
&purgeable_reprotection_value);
}
// Default zone
g_old_malloc = default_zone->malloc;
g_old_calloc = default_zone->calloc;
g_old_valloc = default_zone->valloc;
g_old_free = default_zone->free;
g_old_realloc = default_zone->realloc;
CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_free &&
g_old_realloc)
<< "Failed to get system allocation functions.";
default_zone->malloc = oom_killer_malloc;
default_zone->calloc = oom_killer_calloc;
default_zone->valloc = oom_killer_valloc;
default_zone->free = oom_killer_free;
default_zone->realloc = oom_killer_realloc;
if (default_zone->version >= 5) {
g_old_memalign = default_zone->memalign;
if (g_old_memalign)
default_zone->memalign = oom_killer_memalign;
}
// Purgeable zone (if it exists)
if (purgeable_zone) {
g_old_malloc_purgeable = purgeable_zone->malloc;
g_old_calloc_purgeable = purgeable_zone->calloc;
g_old_valloc_purgeable = purgeable_zone->valloc;
g_old_free_purgeable = purgeable_zone->free;
g_old_realloc_purgeable = purgeable_zone->realloc;
CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable &&
g_old_valloc_purgeable && g_old_free_purgeable &&
g_old_realloc_purgeable)
<< "Failed to get system allocation functions.";
purgeable_zone->malloc = oom_killer_malloc_purgeable;
purgeable_zone->calloc = oom_killer_calloc_purgeable;
purgeable_zone->valloc = oom_killer_valloc_purgeable;
purgeable_zone->free = oom_killer_free_purgeable;
purgeable_zone->realloc = oom_killer_realloc_purgeable;
if (purgeable_zone->version >= 5) {
g_old_memalign_purgeable = purgeable_zone->memalign;
if (g_old_memalign_purgeable)
purgeable_zone->memalign = oom_killer_memalign_purgeable;
}
}
// Restore protection if it was active.
if (default_reprotection_start) {
kern_return_t result = mach_vm_protect(mach_task_self(),
default_reprotection_start,
default_reprotection_length,
false,
default_reprotection_value);
CHECK(result == KERN_SUCCESS);
}
if (purgeable_reprotection_start) {
kern_return_t result = mach_vm_protect(mach_task_self(),
purgeable_reprotection_start,
purgeable_reprotection_length,
false,
purgeable_reprotection_value);
CHECK(result == KERN_SUCCESS);
}
#endif
// === C malloc_zone_batch_malloc ===
// batch_malloc is omitted because the default malloc zone's implementation
// only supports batch_malloc for "tiny" allocations from the free list. It
// will fail for allocations larger than "tiny", and will only allocate as
// many blocks as it's able to from the free list. These factors mean that it
// can return less than the requested memory even in a non-out-of-memory
// situation. There's no good way to detect whether a batch_malloc failure is
// due to these other factors, or due to genuine memory or address space
// exhaustion. The fact that it only allocates space from the "tiny" free list
// means that it's likely that a failure will not be due to memory exhaustion.
// Similarly, these constraints on batch_malloc mean that callers must always
// be expecting to receive less memory than was requested, even in situations
// where memory pressure is not a concern. Finally, the only public interface
// to batch_malloc is malloc_zone_batch_malloc, which is specific to the
// system's malloc implementation. It's unlikely that anyone's even heard of
// it.
// === C++ operator new ===
// Yes, operator new does call through to malloc, but this will catch failures
// that our imperfect handling of malloc cannot.
std::set_new_handler(oom_killer_new);
#ifndef ADDRESS_SANITIZER
// === Core Foundation CFAllocators ===
// This will not catch allocation done by custom allocators, but will catch
// all allocation done by system-provided ones.
CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
!g_old_cfallocator_malloc_zone)
<< "Old allocators unexpectedly non-null";
bool cf_allocator_internals_known = CanGetContextForCFAllocator();
if (cf_allocator_internals_known) {
CFAllocatorContext* context =
ContextForCFAllocator(kCFAllocatorSystemDefault);
CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
g_old_cfallocator_system_default = context->allocate;
CHECK(g_old_cfallocator_system_default)
<< "Failed to get kCFAllocatorSystemDefault allocation function.";
context->allocate = oom_killer_cfallocator_system_default;
context = ContextForCFAllocator(kCFAllocatorMalloc);
CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
g_old_cfallocator_malloc = context->allocate;
CHECK(g_old_cfallocator_malloc)
<< "Failed to get kCFAllocatorMalloc allocation function.";
context->allocate = oom_killer_cfallocator_malloc;
context = ContextForCFAllocator(kCFAllocatorMallocZone);
CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
g_old_cfallocator_malloc_zone = context->allocate;
CHECK(g_old_cfallocator_malloc_zone)
<< "Failed to get kCFAllocatorMallocZone allocation function.";
context->allocate = oom_killer_cfallocator_malloc_zone;
} else {
NSLog(@"Internals of CFAllocator not known; out-of-memory failures via "
"CFAllocator will not result in termination. http://crbug.com/45650");
}
#endif
// === Cocoa NSObject allocation ===
// Note that both +[NSObject new] and +[NSObject alloc] call through to
// +[NSObject allocWithZone:].
CHECK(!g_old_allocWithZone)
<< "Old allocator unexpectedly non-null";
Class nsobject_class = [NSObject class];
Method orig_method = class_getClassMethod(nsobject_class,
@selector(allocWithZone:));
g_old_allocWithZone = reinterpret_cast<allocWithZone_t>(
method_getImplementation(orig_method));
CHECK(g_old_allocWithZone)
<< "Failed to get allocWithZone allocation function.";
method_setImplementation(orig_method,
reinterpret_cast<IMP>(oom_killer_allocWithZone));
}
} // namespace base
|