1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process/process_iterator.h"
#include <sys/sysctl.h>
#include "base/logging.h"
#include "base/strings/string_util.h"
namespace base {
ProcessIterator::ProcessIterator(const ProcessFilter* filter)
: index_of_kinfo_proc_(),
filter_(filter) {
int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, getuid() };
bool done = false;
int try_num = 1;
const int max_tries = 10;
do {
size_t len = 0;
if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) {
LOG(ERROR) << "failed to get the size needed for the process list";
kinfo_procs_.resize(0);
done = true;
} else {
size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
// Leave some spare room for process table growth (more could show up
// between when we check and now)
num_of_kinfo_proc += 16;
kinfo_procs_.resize(num_of_kinfo_proc);
len = num_of_kinfo_proc * sizeof(struct kinfo_proc);
if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) <0) {
// If we get a mem error, it just means we need a bigger buffer, so
// loop around again. Anything else is a real error and give up.
if (errno != ENOMEM) {
LOG(ERROR) << "failed to get the process list";
kinfo_procs_.resize(0);
done = true;
}
} else {
// Got the list, just make sure we're sized exactly right
size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
kinfo_procs_.resize(num_of_kinfo_proc);
done = true;
}
}
} while (!done && (try_num++ < max_tries));
if (!done) {
LOG(ERROR) << "failed to collect the process list in a few tries";
kinfo_procs_.resize(0);
}
}
ProcessIterator::~ProcessIterator() {
}
bool ProcessIterator::CheckForNextProcess() {
std::string data;
for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) {
size_t length;
struct kinfo_proc kinfo = kinfo_procs_[index_of_kinfo_proc_];
int mib[] = { CTL_KERN, KERN_PROC_ARGS, kinfo.ki_pid };
if ((kinfo.ki_pid > 0) && (kinfo.ki_stat == SZOMB))
continue;
length = 0;
if (sysctl(mib, arraysize(mib), NULL, &length, NULL, 0) < 0) {
LOG(ERROR) << "failed to figure out the buffer size for a command line";
continue;
}
data.resize(length);
if (sysctl(mib, arraysize(mib), &data[0], &length, NULL, 0) < 0) {
LOG(ERROR) << "failed to fetch a commandline";
continue;
}
std::string delimiters;
delimiters.push_back('\0');
Tokenize(data, delimiters, &entry_.cmd_line_args_);
size_t exec_name_end = data.find('\0');
if (exec_name_end == std::string::npos) {
LOG(ERROR) << "command line data didn't match expected format";
continue;
}
entry_.pid_ = kinfo.ki_pid;
entry_.ppid_ = kinfo.ki_ppid;
entry_.gid_ = kinfo.ki_pgid;
size_t last_slash = data.rfind('/', exec_name_end);
if (last_slash == std::string::npos) {
entry_.exe_file_.assign(data, 0, exec_name_end);
} else {
entry_.exe_file_.assign(data, last_slash + 1,
exec_name_end - last_slash - 1);
}
// Start w/ the next entry next time through
++index_of_kinfo_proc_;
return true;
}
return false;
}
bool NamedProcessIterator::IncludeEntry() {
if (executable_name_ != entry().exe_file())
return false;
return ProcessIterator::IncludeEntry();
}
} // namespace base
|